

This project has received funding from the European Commission, under the Horizon
Europe research and innovation programme, Grant Agreement No 101094349.
http://www.craeft.eu/

CRAEFT

Maker-Material-Negotiation
Model and CAP

Project Acronym Craeft

Project Title Craft Understanding, Education, Training, and Preservation for Posterity and
Prosperity

Project Number 101094349

Deliverable Number D2.2

Deliverable Title Maker-Material-Negotiation Model and CAP

Work Package WP2

Authors Carlo Meghini, Valentina Bartalesi, Nicolò Pratelli, Voula Doulgeraki, Ioanna
Demeridou, Nikolaos Partarakis, Xenophon Zabulis

Number of pages 105

http://www.craeft.eu/

D1.1 The deliverable name as in the GA

Craeft D1.1 2/105

Executive summary
The present deliverable reports the work done in Tasks T2.3 “Maker-Material-Negotiation model” and
T2.4 “CRAEFT Authoring Platform”.

It is divided into two main parts: the first part comprises Section 2, which describes the Maker-Material-
Negotiation model; the second part comprises Section 3, which describes the CREAFT Authoring
Platform.

Section 2, after introducing notational conventions (Section 2.1) and describing the structure of IRIs
used for the identification of CRAEFT resources (Section 2.2) is structured into the following main parts:

 Section 2.3 recapitulates the Narrative ontology, which forms an important conceptual basis of the
CRAEFT ontology since it axiomatizes the vocabulary for describing processes and actions from a
very general point of view. The Narrative Ontology has been used for craft representation in the
Mingei innovation action, the predecessor of the CRAEFT project, and provides basic classes and
properties for representing structured courses of events (called fabulae) documented through
knowledge objects of multimedia nature (called narrations) linked to events by an ad hoc function
(called reference function). To achieve its goals, the Narrative ontology provides fundamental
notions such as agents, time and space, and does so by relying on a core ontology, the CIDOC CRM,
and domain ontologies, such as OWL Time, all standards de iure or de facto. Standards are also the
language in which the Narrative Ontology is expressed (OWL 2 DL) and the notation used (RDF
Turtle). Needless to say, the CRAEFT Ontology adopts the standard-based approach of Narrative
Ontology to achieve maximum interoperability. Section 2.3 is organized into several sub-sections:
after the sub-sections presenting the main classes and properties, it includes sub-sections dealing
with specific aspects, such as the representations of actor roles in events, time modelling, space,
and time-varying properties.

 Section 2.4 gives a conceptualisation of these entities, forming the basis of the ontology introduced
in the subsequent section. The conceptualisation is strongly influenced by the specific context of
the project, which requires three levels of representation: the schema level, where processes and
actions are described by plans providing the general structure; the virtual level, where processes
and actions schemas are instantiated by simulating them for given input parameters; the real level,
where virtual processes and actions are enacted in a real context. Process and action schemas are
modelled based on the standard set by activity diagrams of the unified Modelling language, that is
graphs comprised of activity nodes and transitions. A subset of the machinery provided for activity
diagrams is employed by the conceptualisation, adequate for the representation of the general
structure of crafts. Virtual processes and actions are modelled to be aligned with the simulator that
computes their outcomes. Real processes and actions, finally, are modelled as fabulae and events,
respectively, of the Narrative Ontology.

 Section 2.5 provides an axiomatization of the conceptualisation presented in the previous Section,
in the OWL 2 DL language, which is the most expressive language of the OWL family retaining
decidability. An important result of this axiomatization is that it covers all the laws that link the
concepts involved except one, the law establishing the correct relation between the properties
declared in an action schema and the properties used in a virtual action that is an instance of that
schema. This law cannot be expressed in OWL 2 DL because properties in an action schema are
treated as individuals. This Section is structured in two main parts: the first part covers activity

D1.1 The deliverable name as in the GA

Craeft D1.1 3/105

nodes of process schemas, and includes actions; the second part covers control nodes of process
schemas.

 Section 2.6 covers the usage of popular names for specific groups of entities drawn from widely
used dictionaries, namely, the Art and Architecture Thesaurus of the Getty Foundation, the
Catalogue of Art Collections, the Thesaurus of Geographic Names, and the Union List of Artist
Names. The source code for these enhancements can be found at
https://zenodo.org/records/10532597.

 Section 2.7 presents the representation of several craft processes and actions in the CRAEFT
Ontology, thus offering a preliminary validation of the ontology on realistic examples and at the
same time an initial proof of concept of the CRAEFT approach, before implementation and
systematic evaluation of the representative craft instances. The considered processes are: inserting
a chisel in a piece of wood, creating a pattern of dots on silver, hammering a piece of wood, bending
a ply of aluminium and pulling a ply apart.

Section 3 outlines the main features of the Web-based, online, multiple-user authoring platform for the
documentation of traditional crafts. The Craeft Authoring Platform (CAP) is an extension of the Mingei
Online Platform (MOP) developed in the Mingei Innovation Action. The extension provides support for
the representation of processes and actions based on the Craeft Ontology. Although it is functional and
accessible online, the CAP is still under development and, thus not yet in its final form. The present
deliverable describes the initial activities performed on the CAP, concerning important aspects that
could not be tackled in Mingei due to lack of time and others that were discovered during the present
research. Specifically,

 Sections 3.1 and 3.2 contextualise the progress until the start of Craeft and briefly describe the
MOP. Section 3.3 describes an overview of the planned improvements planned.

 In Section 3.4, we describe the addition of multilingualism features.

 In Section 3.5, we describe the features that automate the establishment of cross-references
between knowledge elements in the CAP, to check the integrity and find mistakes, such as
unreferenced entities and dead links.

 In Section 3.6, we describe how we use the European OpenAIRE infrastructure Zenodo to store our
digital assets and submit them to Europeana extensively so that other heritage institutions can
follow the same technique. In Section 3.7, we describe technical enhancements, such as the export
of knowledge elements to file (Section 3.7.1) and the export of files for automatic ingestion of
assets to Europeana (Section 3.7.2).

 Finally, in Section 3.7.4, we present an upgrade of the way that 3D models are viewed online in the
CAP.

Finally, Section 4 concludes and summarises this deliverable.

Document history
Date Author Affiliation Comment

19/1/2024 Carlo Meghini CNR First draft

22/1/2024 Xenophon Zabulis FORTH Added missing figures.

https://zenodo.org/records/10532597

D1.1 The deliverable name as in the GA

Craeft D1.1 4/105

23/1/2024 Carlo Meghini CNR Final versions

26/1/2024 Xenophon Zabulis FORTH Edits, formatting.

2/2/2024 Internal Review

16/2/2024 Carlo Meghini CNR Final version

Abbreviations
3D Three dimensional

AAT Arts and Architecture Thesaurus

CAP Craeft Authoring Platform

CH Cultural Heritage

CONA Catalogue of Art Collections

HTML Hypertext Markup Language

MoCap Motion Capture

MOP Mingei Online Platform

TGN Thesaurus of Geographic Names

RDF Resource Description Framework

RS Research Space

ULAN Union List of Artist Names

UNESCO United Nations Educational, Scientific and Cultural Organization

URL Uniform Resource Locator

XML Extensible Markup Language

D1.1 The deliverable name as in the GA

Craeft D1.1 5/105

Table of contents
Executive summary 2

Document history 3

Abbreviations 4

Table of contents 5

1. Introduction 7

2. The CRAEFT Ontology 8

2.1. Notational conventions 10

2.2. Resource identification 10

2.3. The Narrative Ontology 11

2.3.1. Main Classes 11

2.3.2. Main Properties 13

2.3.3. Representing actor roles in events 17

2.3.4. Modelling presentation segments 18

2.3.5. Modelling Time 18

2.3.6. Modelling Space 20

2.3.7. Modelling time-varying properties 23

2.4. Modelling processes and actions 24

2.4.1 Processes 24

2.4.2. Actions 25

2.4.3. Schemas 27

2.4.4. Transitions 29

2.5. An ontology of processes and actions 31

2.5.1. Activities 32

2.5.2. Transitions 45

2.6. Linking to standard dictionaries 57

2.6.1.1. AAT 57

2.6.1.2. CONA 61

2.6.1.3. TGN and Geonames 62

2.6.1.4. ULAN 64

2.6.1.5. Additional dictionaries 65

2.6.1.6. Implementation 68

2.7. Examples 69

2.7.1. Inserting a chisel in a piece of wood 70

D1.1 The deliverable name as in the GA

Craeft D1.1 6/105

2.7.2. Creating a pattern of dots on silver 74

2.7.3. Hammering a piece of wood 77

2.7.4. Bending a ply of aluminium 80

2.7.5. Pulling a ply apart 82

3. The CRAEFT Authoring Platform 85

3.1. Representation of knowledge in the MOP/CAP 86

3.2. User Interface 86

3.3. Progress in Craeft 90

3.4. Multilingualism 90

3.4.1. Objectives 90

3.4.2. Methodology 91

3.4.3. Implementation notes 92

3.5. Cross-references 92

3.5.1. Objectives 93

3.5.2. Methodology 93

3.6. Other enhancements 96

3.6.1. Knowledge element to file 98

3.6.2. Export for Europeana ingestion 98

3.6.3. Zenodo storage 96

3.6.4. Online viewing of 3D models 100

4. Conclusions 102

References 104

D1.1 The deliverable name as in the GA

Craeft D1.1 7/105

1. Introduction

This document provides a detailed account of the Maker-Material-Negotiation model, termed “CRAEFT
Ontology”, and of the CRAEFT Authoring Platform. It is divided into two main parts, each devoted to one
of these two topics.

The first part, after some introductory information, recapitulates the narrative ontology and then presents
an ontology of processes and actions, which is required to achieve the CRAEFT objectives. The latter part
is the novel contribution of CRAEFT. It extends the Mingei Ontology by providing richer representations
and is tightly coupled with the simulator employed by the project to compute the effects of actions. The
linking to standard vocabularies is also presented, and a first, conceptual evaluation of the ontology is
given by representing a few sample processes and actions.

The second part gives general information about the CRAEFT Authoring Platform, which at this stage is a
minimal extension of the Mingei Online Platform that can manage the new concepts provided by the
CRAEFT Ontology.

A second and final release of the deliverable will be provided in Month 24. This new release is expected
to provide: (1) a more systematic evaluation of the CRAEFT Ontology, along with the required
amendments to the version of the ontology reported here, and (2) a more complete implementation of
the CRAEFT Authoring Platform, providing improvements specifically tailored to the newer part of the
ontology.

D1.1 The deliverable name as in the GA

Craeft D1.1 8/105

2. The CRAEFT Ontology

The CRAEFT Ontology (from now on, simply “CrO”) is used to represent the knowledge about crafts that
the CRAEFT project is targeted to represent and preserve.

Following the approach successfully adopted in Mingei, the CrO views a craft as a narrative, composed by
a fabula and a narration [6].

● The fabula of the craft is the craft process, that is, the complex activity situated in time and space
that is carried out by a group of people to produce a craft. For simplicity, from now on we will use
the term “process” with the meaning of “craft process”, unless otherwise specified.

● The narration of a craft is given by the documentation of the crafting process, consisting of texts,
videos, images and data, collected during the execution of the craft, and related to the events of
the fabula in the same way media objects are related to the events of a fabula.

At the same time, CrO tries to respond to the representational requirements that have emerged during
the collaboration with craft experts striking a balance amongst several, often conflicting aspects:
expressive power, usability, interoperability and efficiency. In particular,

● for expressive power, CrO is expressed in OWL 2 DL [1], currently the most expressive decidable
language of the OWL family;

● for usability, CrO expresses a conceptualisation directly derived from the interaction with craft
experts, to reflect the vision of the practitioners of the craft domain;

● for interoperability, CrO rests on several standards, the most prominent of which are: the very
language in which it is expressed, OWL 2 DL, a standard of the W3C, and the top ontology CIDOC
CRM [2][3], from a few decades an ISO standard with wide adoption in the Cultural Heritage
domain [4]. Other standards on which CrO relies will be noted in due course; the axioms linking
the CrO classes and properties to the CRM vocabulary are presented together with those defining
them;

● for efficiency, CrO is implemented on top of a platform that allows fine-tuning of performances.

Technically, CrO is an OWL 2 DL application ontology (according to the terminology introduced in [5]) that
rests on the top ontology CIDOC CRM as its conceptual backbone1 and on several domain ontologies:

● the Narrative Ontology, a domain ontology focused on the representation of narratives [6];
● OWL Time, a domain ontology recommended by W3C for the representation of time [7];
● Dublin Core for simple resource description [8].

In addition, CrO includes extensions to the above ontologies needed to model specific aspects of reality
relevant to CRAEFT, such as process schemas for which CrO relies on UML Activity Diagrams, a de facto
standard [9]. CrO also uses the Semantic Web languages for modelling knowledge, in particular:

● the Resource Description Framework (RDF) for basic knowledge representation [10];

1 CRont uses the OWL 2 DL expression of the CIDOC CRM, named “CRM Erlangen”, available from:

https://www.erlangen-crm.org//current-version

https://www.erlangen-crm.org/current-version

D1.1 The deliverable name as in the GA

Craeft D1.1 9/105

● the RDF Schema Vocabulary for simple ontology modelling [11];
● OWL 2 DL for rich ontology modelling [1];
● XML Schema for datatypes [12].

Table I below provides the namespaces of these ontologies and the prefix we use in the CrO for each of
these namespaces.

Table 1 The ontologies used in CrO, their prefixes and their namespaces

Prefix Ontology Namespace

craeft: The CRAEFT Ontology <https://craeft.eu/ontology/current/>

narr: The Narrative Ontology <https://dlnarratives.eu/ontology#>

rdf:
Resource Description Framework
(RDF) Vocabulary

<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

rdfs: RDF Schema Vocabulary <http://www.w3.org/2000/01/rdf-schema#>

owl:
Web Ontology Language (OWL)
Vocabulary

<http://www.w3.org/2002/07/owl#>

xsd: XML Schema <http://www.w3.org/2001/XMLSchema#>

ecrm:
The CIDOC CRM Ontology
(Erlangen expression)

<http://erlangen-crm.org/current/>

time: OWL Time Ontology <http://www.w3.org/2006/time#>

geo: OGC GeoSPARQL <http://www.opengis.net/ont/geosparql#>

crmgeo: CRMgeo Spatiotemporal model
<https://www.cidoc-
crm.org/crmgeo/sites/default/files/CRMgeo_v1_2.r
dfs>

The rest of this Section is structured as follows:

● Section 2.1 introduces some notational conventions followed in the presentation of the ontology.
● Section 2.2 presents the identification of resources in the CrO.
● Section 2.3 briefly recapitulates the narrative ontology.
● Section 2.4 presents a conceptualisation of the notions central to the CRAEFT project, namely

(craft) processes and actions.
● Section 2.5 axiomatizes the conceptualisation given in the previous Section.
● Section 2.6 extends the CrO with links to standard vocabularies.
● Section 2.7 gives some examples of processes and actions modelled with the CrO.

https://craeft.eu/ontology/current/
https://dlnarratives.eu/ontology#MOFragment
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2002/07/owl
http://www.w3.org/2001/XMLSchema
http://erlangen-crm.org/current/
http://www.w3.org/2006/time
http://www.opengis.net/ont/geosparql
https://www.cidoc-crm.org/crmgeo/sites/default/files/CRMgeo_v1_2.rdfs
https://www.cidoc-crm.org/crmgeo/sites/default/files/CRMgeo_v1_2.rdfs
https://www.cidoc-crm.org/crmgeo/sites/default/files/CRMgeo_v1_2.rdfs

D1.1 The deliverable name as in the GA

Craeft D1.1 10/105

2.1. Notational conventions

International Resource Identifiers (IRIs, for brevity) are written in the standard prefixed notation, in which
the absence of a prefix indicates that the base prefix is used.

The conceptualization of the various aspects of the ontology is presented in the text. The ensuing axioms
are stated using the following notation:

Ln Every axiom is given in a row like this, where: Ln is an optional unique identifier and pref is an
optional prefix identifying the ontology where the axiom belongs. The axiom is given in the second
column in a terse natural language, very close to the logical expression of the axiom in the OWL 2
DL language.

For perspicuity, a subset of the axioms is given graphically, according to the following notation, well-
known in database design:

Axioms of the OWL 2 DL languages that are stated in the present document are written using the
functional notation and enclosed in table rows with the following graphic format:

OWL 2 DL axiom

2.2. Resource identification

CrO conforms to the best practices for semantic interoperability, in the context of the Linked Data
paradigm that the CRAEFT project adopts for the data that it collects or creates to reach its objectives. A
crucial issue in this respect is the identification of resources, which concerns the policy followed by CRAEFT
for assigning IRIs to the resources it manages.

The policy is given by the following principles:

1. A new IRI from the CRAEFT namespace is minted for every resource referenced in the CRAEFT
Knowledge Base. This IRI has the form <https://craeft-project.eu/resource/N>, where:
http://craeft-project.eu/ identifies the CRAEFT namespace, and N is a unique progressive number,
identifying this resource in the CRAEFT namespace. In this way, each resource is assigned a unique
integer number N, regardless of the class to which the resource belongs, which gives rise to a
unique IRI.

2. For popular resources that have one or more identifiers in other Linked Data datasets, such as
Wikidata, VIAF, etc., an axiom of the form

https://craeft-project.eu/resource/N

D1.1 The deliverable name as in the GA

Craeft D1.1 11/105

ObjectPropertyAssertion(craeft-IRI owl:sameAs other-IRI)

is asserted in the CRAEFT knowledge base, where craeft-IRI is the IRI of the resource described
in the previous point and other-IRI is any other popular IRI of the resource.

The rationale for these principles is to follow the recommendations on Linked Data2, which are:

● Use URIs as names for things
● Use HTTP URIs so that people can look up those names.
● When someone looks up a URI, provide useful information, using the standards (RDF*, SPARQL)
● Include links to other URIs. so that they can discover more things.

In particular, the first principle follows the first three recommendations, since a CRAEFT identifier is an
HTTP IRI the de-referenciation of which is under the control of the CRAEFT project. In this way, the project
has the opportunity to deliver a CRAEFT web page or an RDF graph for describing the resource to the
human or digital users, respectively, who ask for any CRAEFT IRI.

The second principle follows the fourth recommendation on Linked Data by linking the Mingei knowledge
base to other graphs containing knowledge about the same resources.

2.3. The Narrative Ontology

The main classes and properties of the Narrative Ontology are depicted in Figure 1.

Figure 1 Main classes and properties of the Narrative Ontology.

2.3.1. Main Classes

A narrative is a composite object, including a narration, a fabula and a plot, as defined in [6]. In CrO, a
narrative is an instance of class narr:Narrative, a subclass of ecrm:E73_Information_Object, the CRM
class that comprises3 “identifiable immaterial items, such as poems, jokes, data sets, images, texts,

2 https://www.w3.org/DesignIssues/LinkedData.html

3 All quotations about CRM classes or properties are from the CIDOC CRM v. 7.3 (May 2023) Official Specification,

retrievable from: https://www.cidoc-
crm.org/sites/default/files/cidoc_crm_version_7.2.3%5B4%20Sep%202023%5D.pdf

https://www.cidoc-crm.org/sites/default/files/cidoc_crm_version_7.2.3%5B4%20Sep%202023%5D.pdf
https://www.cidoc-crm.org/sites/default/files/cidoc_crm_version_7.2.3%5B4%20Sep%202023%5D.pdf

D1.1 The deliverable name as in the GA

Craeft D1.1 12/105

multimedia objects, procedural prescriptions, computer program code, algorithm or mathematical
formulae, that have an objectively recognizable structure and are documented as single units”. As such, is
ecrm:E73_Information_Object a natural fit for narratives.

 narr:Narrative is a class

 narr:Narrative is a subclass of ecrm:E73_Information_Object

A narration is the part of the narrative that narrates the narrative’s fabula using a natural, in the sense of
non-formal, language. In CrO, a narration is an instance of class narr:Narration, a subclass of
ecrm:E89_Propositional_Object, which “comprises immaterial items, including but not limited to
stories, plots, procedural prescriptions, algorithms, laws of physics or images that are, or represent in some
sense, sets of propositions about real or imaginary things and that are documented as single units or serve
as a topic of discourse”.

 narr:Narration is a class

 narr:Narration is a subclass of ecrm:E89_Propositional_Object

A fabula consists of the events narrated by a narrative, in chronological order. As such it is an instance of
class narr:Fabula, a subclass of class ecrm:E4_Period, which “comprises sets of coherent phenomena
or cultural manifestations occurring in time and space”.

 narr:Fabula is a class

 narr:Fabula is a subclass of ecrm:E4_Period

An event is an instance of class ecrm:E5_Event, which “comprises distinct, delimited and coherent
processes and interactions of a material nature, in cultural, social or physical systems, involving and
affecting instances of E77 Persistent Item in a way characteristic of the kind of process. Typical examples
are meetings, births, deaths, actions of decision taking, making or inventing things, but also more complex
and extended ones such as conferences, elections, building of a castle, or battles”. Events also include
actions, which are viewed as happenings with an intention.

Media objects, relevant to CrO since they represent narrations’ contents, are instances of class
narr:MObject, a subclass of ecrm:E90_Symbolic_Object, which “comprises identifiable symbols and
any aggregation of symbols, such as characters, identifiers, traffic signs, emblems, texts, data sets, images,
musical scores, multimedia objects, computer program code or mathematical formulae that have an
objectively recognizable structure and that are documented as single units”. Types of media objects are
instances of class narr:MOType, a subclass of ecrm:E55_Type.

 narr:MObject is a class

 narr:MObject is a subclass of ecrm:E90_Symbolic_Object

D1.1 The deliverable name as in the GA

Craeft D1.1 13/105

 narr:MOType is a class

 narr:MOType is a subclass of ecrm:E55_Type

A fragment of a media object is an instance of class narr:MOFragment. Media object fragments are
important is the formal representations of narratives since they typically are parts of narrations that
present specific events or relevant parts of events. Also, media object fragments are instances of
ecrm:E90_Symbolic_Object.

 narr:MOFragment is a class

 narr:MOFragment is a subclass of ecrm:E90_Symbolic_Object

A presentation is an illustration of the fabula in a way that is somewhat alternative to the narration, which
is the illustration of the fabula chosen by the author. For this reason, the class of presentations,
narr:Presentation, is a subclass of ecrm:E89_Propositional_Object, similarly to the class
narr:Narration.

 narr:Presentation is a class

 narr:Presentation is a subclass of ecrm:E89_Propositional_Object

2.3.2. Main Properties

The connection between a narrative and its fabula is captured by property narr:hasFabula. The relation
captured by this property is a generic semantics relation, in that it connects an information object with a
(representation of a) set of phenomena described by that object. Therefore it is a sub-property of
ecrm:E89_P129_is_about, which “describes the primary subject or subjects of an instance of E89
Propositional Object”. We note the Narrative is a subclass of ecrm:E89_Propositional_Object,
therefore every narrative is also an instance of ecrm:E89_Propositional_Object.

 narr:hasFabula is an object property

 narr:hasFabula is a subproperty of ecrm:P129_is_about

 The domain of narr:hasFabula is class narr:Narrative

 The range of narr:hasFabula is class narr:Fabula

The connection between a narrative and its narration is captured by property narr:hasNarration. This
relation is an inherence relation, linking a whole to one of its components, therefore it is a sub-property
of ecrm:P148_has_component, which “associates an instance of E89 Propositional Object with a
structural part of it that is by itself an instance of E89 Propositional Object”. We note that both narratives

D1.1 The deliverable name as in the GA

Craeft D1.1 14/105

and narrations are instances of ecrm:E73_Information_Object, hence of
ecrm:E89_Propositional_Object.

 narr:hasNarration is a property

 narr:hasNarration is a subproperty of ecrm:E89_Propositional_Object

 The domain of narr:hasNarration is class narr:Narrative

 The range of narr:hasNarration is class narr:Narration

The connection between a fabula and anyone of its events is captured by property narr:hasEvent. The
CRM offers property ecrm:P9_consists_of, which is the composition property for temporal entities, as
it “associates an instance of E4 Period with another instance of E4 Period that is defined by a subset of the
phenomena that define the former”. Thus narr:hasEvent is a subproperty of ecrm:P9_consists_of. We
note that both fabulae and events are instances of ecrm:E4_Period.

 narr:hasEvent is a property

 narr:hasEvent is a subproperty of ecrm:P9_consists_of

 The domain of narr:hasEvent is class narr:Fabula

 The range of narr:hasEvent is class ecrm:E5_Event

The connection between a Narration and a Presentation is captured by property narr:hasPresentation.
We consider this connection simply a composition relation thus we make narr:hasPresentation a sub-
property of ecrm:P148_has_component, coherently with the fact that both narrations and presentations
are instances of ecrm:E89_Propositional_Object.

 narr:hasPresentation is a property

 narr:hasPresentation is a subproperty of ecrm:P148_has_component

 The domain of narr:hasPresentation is class narr:Narration

 The range of narr:hasPresentation is class narr:Presentation

The connection between a media object fragment and the event it describes is captured by property
narr:refersTo. In the CRM, this role is played by property ecrm:P129_is_about, which ”documents that
an E89 Propositional Object has as subject an instance of E1 CRM Entity”. Therefore, narr:refersTo is a
sub-property of ecrm:P129_is_about.

 narr:refersTo is a property

 narr:refersTo is a subproperty of ecrm:P129_is_about

D1.1 The deliverable name as in the GA

Craeft D1.1 15/105

 The domain of narr:refersTo is class narr:MOFragment

 The range of narr:refersTo is class ecrm:E5_Event

The connection between a media object and anyone of its fragments is captured by property
narr:hasFragment. The CRM offers property ecrm:P106_is_composed_of which “associates an
instance of E90 Symbolic Object with a part of it that is by itself an instance of E90 Symbolic Object, such
as fragments of texts or clippings from an image”. Therefore, narr:hasFragment is a sub-property of
ecrm:P106_is_composed_of.

 narr:hasFragment is a property

 narr:hasFragment is a subproperty of ecrm:P106_is_composed_of

 The domain of narr:hasFragment is class narr:MObject

 The range of narr:hasFragment is class narr:MOFragment

The connection between a media object and its type is captured by property narr:hasMOType, a
subproperty of the CRM property ecrm:P2_has_type.

 narr:hasMOType is a property

 narr:hasMOType is a subproperty of ecrm:P2_has_type

 The domain of narr:hasMOType is class narr:MObject

 The range of narr:hasMOType is class narr:MOType

The connection between a narration and the media object giving its content is captured by property
narr:hasContent. The CRM offers property ecrm:P129i_is_subject_of, which “documents that an
instance of E89 Propositional Object has as subject an instance of E1 CRM Entity”. For these reasons,
narr:hasContent is a sub-property of ecrm:P129i_is_subject_of.

 narr:hasContent is a property

 narr:hasContent is a subproperty of ecrm:P129i_is_subject_of

 The domain of narr:hasContent is class narr:Narration

 The range of narr:hasContent is class narr:MObject

The connection between a presentation and anyone of its segments (see below) is captured by property
narr:hasPresentationSegment. Also this is a composition property, thus we make it a sub-property of
ecrm:P148_has_component.

D1.1 The deliverable name as in the GA

Craeft D1.1 16/105

 narr:hasPresentationSegment is a property

 narr:hasPresentationSegment is a subproperty of ecrm:P148_has_component

 The domain of narr:hasPresentationSegment is class narr:Presentation

 The range of narr:hasPresentationSegment is class narr:PresentationSegment

The connection between a presentation segment and a media object fragment is captured by property
narr:refersToMOFragment. Since the latter is the content of the former, narr:refersToMOFragment is
a sub-property of ecrm:P129i_is_subject_of, similarly to property narr:hasContent.

 narr:refersToMOFragment is a property

 narr:refersToMOFragment is a subproperty of ecrm:P129i_is_subject_of

 The domain of narr:refersToMOFragment is class narr:PresentationSegment

 The range of narr:refersToMOFragment is class narr:MOFragment

The connection between an event and any composing sub-event of it is captured by property
narr:hasSubevent. In the CRM, the same role is played by property ecrm:P9_consists_of, which
“describes the decomposition of an instance of E4 Period into discrete, subsidiary periods. The sub-periods
into which the period is decomposed form a logical whole - although the entire picture may not be
completely known - and the sub-periods are constitutive of the general period”. Therefore, the
narr:hasSubevent property is a sub-property of ecrm:P9_consists_of.

 narr:hasSubevent is a property

 narr:hasSubevent is a subproperty of ecrm:P9_consists_of

 The domain of narr:hasSubevent is class ecrm:E5_Event

 The range of narr:hasSubevent is class ecrm:E5_Event

The connection between an event and any other entity on which the event causally depends is captured
by properties narr:causallyDependsOn, whose inverse is defined for convenience and is given by
narr:isInfluencedBy. The CRM does not address the causal dependency between proper events, but
offers a property that subsumes causality, namely ecrm:P15_was_influenced_by, which “captures the
relationship between an instance of E7 Activity and anything, that is, an instance of E1 CRM Entity that
may have had some bearing upon it”. As it turns out, ecrm:P15_was_influenced_by is fairly generic
having as domain class ecrm:E7_Activity and as range the most generic CRM class
ecrm:E1_CRM_Entity. Therefore we assert narr:causallyDependsOn as a sub-property of
ecrm:P15_was_influenced_by.

 narr:causallyDependsOn is a property

D1.1 The deliverable name as in the GA

Craeft D1.1 17/105

 narr:causallyDependsOn is a subproperty of ecrm:P15_was_influenced_by

 The domain of narr:causallyDependsOn is class ecrm:E5_Event

 The range of narr:causallyDependsOn is class ecrm:E1_CRM_Entity

 narr:isInfluencedBy is a property

 narr:isInfluencedBy is the inverse property of narr:causallyDependsOn

For the connection between an event and its spatial region of occurrence, we use the CRM property
ecrm:P7_took_place_at, which “describes the spatial location of an instance of E4 Period”. Similarly, for
the connection between an event and its temporal region of occurrence, we use the CRM property
ecrm:P4_has_time_span, which “associates an instance of E2 Temporal Entity with the instance of E52
Time- Span during which it was on-going”. Finally, for the connection between an event and the agent(s)
that performed it, we use the CRM property ecrm:P14_carried_out_by, which “describes the active
participation of an instance of E39 Actor in an instance of E7 Activity”.

2.3.3. Representing actor roles in events

In CRAEFT there was the need to specify a role for an actor in an event (e.g., Pliny the Elder is an observer
of the Vesuvius eruption). In natural language, the relation between actor, role and event is a triadic
relation, since it involves three individuals. On the other hand, ternary properties are not allowed in
Semantic Web languages. The CRM solves this problem by allowing properties of properties (e.g., P14.1,
see below). But again, this solution cannot be adopted in CRAEFT since CRAEFT is committed to Semantic
Web languages. To overcome this problem, CrO provides class narr:ActorWithRole and three properties
to properly connect its instances to events, actors and roles. The three properties are:

● property narr:hadParticipant links events to instances of narr:ActorWithRole; this is a
subproperty of the CRM property ecrm:P12_occurred_in_the_presence_of, which “describes
the active or passive presence of an E77 Persistent Item in an instance of E5 Event without implying
any specific role”;

● property narr:hasSubject links instances of narr:ActorWithRole to instances of class
ecrm:E39_Actor, giving the person or the person group that participates in the event; this is a
subproperty of the CRM property ecrm:P148_has_component, which is used to link propositional
objects to their components;

● property narr:hasRole links instances of narr:ActorWithRole to a type giving the role of the
actor; also this is a subproperty of the CRM property ecrm:P148_has_component.

 narr:ActorWithRole is a class

 narr:hadParticipant is an object property

 narr:hadParticipant is a subproperty of ecrm:P12_occurred_in_the_presence_of

 The domain of narr:hadParticipant is class ecrm:E5_Event

D1.1 The deliverable name as in the GA

Craeft D1.1 18/105

 The range of narr:hadParticipant is class narr:ActorWithRole

 narr:hasSubject is an object property

 narr:hasSubject is a subproperty of ecrm:P148_has_component

 The domain of narr:hasSubject is class narr:ActorWithRole

 The range of narr:hasSubject is class ecrm:E39_Actor

 narr:hasRole is an object property

 narr:hasRole is a subproperty of ecrm:P148_has_component

 The domain of narr:hasRole is class narr:ActorWithRole

 The range of narr:hasRole is class narr:Role

2.3.4. Modelling presentation segments

Presentation segments are parts of presentations that have content. They are characterised by a few data
properties, namely:

● Starting and ending points, which locate a segment of a presentation into the virtual space of its
playing. As such, they are not related to effective temporal entities, which are involved only when
the presentation is executed on a specific devise;

● Duration;
● Order;
● Channel, giving the output channel in which a segment belongs.

The corresponding data properties are: narr:startsAtPoint, narr:endsAtPoint,
narr:hasPresentationDuration, narr:hasPresentationSegOrder and narr:refersToChannel. All
these properties are subproperties of ecrm:P3_has_note, which “is a container for all informal
descriptions about an object that has not been expressed in terms of CIDOC CRM constructs”.

The corresponding axioms are not reported for brevity.

2.3.5. Modelling Time

The main classes for the representation of time are narr:TimePoint and narr:TimeInterval,
representing points and intervals of time, respectively. narr:TimePoint is equivalent to the OWL Time
class owltime:Instant, while narr:TimePoint is equivalent to the OWL Time class
owltime:ProperInterval and the CRM class ecrm:E52_TimeSpan.

 narr:TimePoint is a class

D1.1 The deliverable name as in the GA

Craeft D1.1 19/105

 narr:TimePoint is equivalent to owltime:Instant

 narr:TimeInterval is a class

 narr:TimeInterval is equivalent to owltime:ProperInterval

 narr:TimeInterval is equivalent to ecrm:E52_Time_Span

As already pointed out, time intervals are connected to events by property ecrm:P4_has_Time_SpanP4,
which associates an event with its interval of occurrence in time. In turn, a time interval is associated with
its starting and ending time points by properties narr:beginsAt and narr:endsAt, respectively. These
properties are equivalent to the properties owltime:hasBeginning and owltime:hasEnd, respectively,
while the CRM does not provide any analogous property to map to.

 narr:beginsAt is an object property

 narr:beginsAt is an equivalent property to owltime:hasBeginning

 The domain of narr:beginsAt is class narr:TimeInterval

 The range of narr:beginsAt is class narr:TimePoint

 narr:endsAt is an object property

 narr:endsAt is an equivalent property to owltime:hasEnd

 The domain of narr:endsAt is class narr:TimeInterval

 The range of narr:endsAt is class narr:TimePoint

In addition to the above properties, the ontology offers properties for associating actual data values with
time points. To this end, we adopt from the OWL Time ontology4 the following properties, all having time
instants as a domain. The following properties provide alternative ways to describe the temporal position
of an instant:

● owltime:inXSDDate, ranging on xsd:date
● owltime:inXSDDateTimeStamp, ranging on xsd:dateTimeStamp
● owltime:inXSDgYear, ranging on xsd:gYear
● owltime:inXSDgYearMonth, ranging on xsd:gYearMonth

The datatypes where these properties range also provide the ordering relations between time points (<,
=, >). In addition, we used the temporal relation primitives based on fuzzy boundaries introduced in the
CRM 7.1.2 (official version) to compare two events. These temporal relation primitives are reported in the
following table, where Estart and Eend are, respectively, the starting and the ending time point of event E,
while “<” and “≤” are, respectively, the “less than” and the “less than or equal” relation between time

4 Time Ontology in OWL. Candidate W3C Recommendations, 15 November 2022, https://www.w3.org/TR/owl-time/

D1.1 The deliverable name as in the GA

Craeft D1.1 20/105

points:

Table 2 Interval temporal properties from the CRM

2.3.6. Modelling Space

To represent spatiotemporal knowledge, the CrO does not define any class or property but entirely relies
on two standards: the CRMgeo, an extension of the CRM for spatiotemporal knowledge, and GeoSPARQL5,
a semantic-web aware standard for geographical information. Happily, the CRMgeo relates its classes and
properties to the classes, topological relations and encodings provided by GeoSPARQL and thus allows
spatiotemporal analysis offered by geoinformation systems based on the semantic distinctions of the
CIDOC CRM. The CRMgeo is a formal ontology intended to be used as a global schema for integrating
spatiotemporal properties of temporal entities and persistent items. It aims to provide a schema
consistent with the CIDOC CRM to integrate geoinformation. CRMgeo uses the conceptualizations, formal
definitions, encoding standards and topological relations defined by the Open Geospatial Consortium
(OGC)6. The rest of this Section briefly introduces the classes and properties of the CRMgeo that are
relevant to the CRAEFT project, and how these classes and properties are related to the corresponding
classes and properties of GeoSPARQL.

All the classes declared in the CRMgeo were given both a name and an identifier constructed according
to the conventions used in the CIDOC CRM model. For classes that identifier consists of the letter SP
followed by a number. The resulting properties were also given a name and an identifier constructed
according to the same conventions. That identifier consists of the letter Q followed by a number, which
in turn is followed by the letter “i” every time the property is mentioned “backwards”, i.e., from target to
domain.

The proposed geospatial representation complies with the OGC geoSPARQL standard, allowing geospatial
queries on knowledge bases containing geographic data in Well-Known Text (WKT)7, a markup language

5 https://opengeospatial.github.io/ogc-geosparql/geosparql11/spec.html
6 https://www.ogc.org/
7 https://www.ogc.org/standard/wkt-crs/

https://opengeospatial.github.io/ogc-geosparql/geosparql11/spec.html
https://www.ogc.org/
https://www.ogc.org/standard/wkt-crs/

D1.1 The deliverable name as in the GA

Craeft D1.1 21/105

for representing vector geometry objects, or Geography Markup Language (GML)8, an XML grammar
defined by the OGC to express geographical features format.

In the CIDOC CRM, an event is an instance of class ecrm:E5_Event while a place is an instance of class
ecrm:E53_Place. An event is associated with its place of occurrence through property
ecrm:P7_took_place_at. In the CRMgeo, ecrm:E53_Place has as subclass
crmgeo:SP2_Phenomenal_Place, which “comprises instances of E53 Place (S) whose extent (U) and
position is defined by the spatial projection of the spatiotemporal extent of a real-world phenomenon that
can be observed or measured. The spatial projection depends on the instance of SP3 Reference Space onto
which the extent of the phenomenon is projected”. An instance of class crmgeo:SP2_Phenomenal_Place
represents any place identified by an IRI in a standard gazetteer, such as Geonames for modern places,
Pleiades for ancient places. crmgeo:SP3_Reference_Space “comprises the (typically Euclidian) Space (S)
that is at rest (I) in relation to an instance of E18 Physical Thing and extends (U) infinitely beyond it. It is
the space in which we typically expect things to stay in place if no particular natural or human distortion
processes occur” (e.g., the space inside and around the Earth).

As Figure 2 shows, in CrO an instance of ecrm:E5_Event is directly linked to its (instance of)
crmgeo:SP2_Phenomenal_Place through property ecrm:P7_took_place_at.

Figure 2 The classes of CRMgeo SP2 Phenomenal Place and its link with CIDOC CRM.

An instance of crmgeo:SP2_Phenomenal_Place is linked to an instance of class
crmgeo:SP5_Geometric_Place_Expression, which “comprises definitions of places by quantitative
expressions. An instance of SP5 Geometric Place Expression can be seen as a prescription of how to find
the location meant by this expression in the real world, which is based on measuring where the quantities
referred to in the expression lead to, beginning from the reference points of the respective reference
system. A form of expression may be geometries or map elements defined in a SP4 Spatial Coordinate
Reference System that unambiguously identify locations in a SP3 Reference Space”.

Since crmgeo:SP2_Phenomenal_Place and crmgeo:SP5_Geometric_Place_Expression are subclasses
of GeoSPARQL classes geosparql:Feature and geosparql:Geometry, respectively, we can use the
following properties also to directly link SP2 and SP5 (see Figure 3):

● geosparql:hasDefaultGeometry, which links an instance of class geosparql:Feature with its
default instance of class geosparql:Geometry. The default geometry is the geometry that should
be used for spatial calculations in the absence of a request for a specific geometry;

8 https://www.ogc.org/standard/gml/

https://www.ogc.org/standard/gml/

D1.1 The deliverable name as in the GA

Craeft D1.1 22/105

● geosparql:hasGeometry, which links an instance of class geosparql:Feature with an instance
of class geosparql:Geometry that represents its spatial extent;

Figure 3 Relation between CRMgeo and Geo SPARQL classes.

An instance of crmgeo:SP2_Phenomenal_Place is linked through the property
ecrm:P1_is_identified_by to an instance of class ecrm:E41_Appellation that provides a name for the
place in a natural language.

An instance of crmgeo:SP5_Geometric_Place_Expression is linked through the property
ecrm:Q9_is_expressed_in_term_of to an instance of class
crmgeo:SP4_Spatial_Coordinate_Reference_System that provides spatial coordinate reference
system that is used by the geometry.

An instance of crmgeo:SP4_Spatial_Coordinate_Reference_System is linked to an instance of
crmgeo:SP3_Reference_Space through property crmgeo:Q7_describes.

An instance of crmgeo:SP5_Geometric_Place_Expression is linked to its serialisation format through
the property geosparql:hasSerialization, which has two subproperties corresponding to two
different kinds of literal:

1. geosparql:asWKT, linking to a wktLiteral
2. geosparql:asGML, linking to a gmlLiteral

In the past, Latitude/Longitude coordinates in the WGS84 coordinate reference system have been

D1.1 The deliverable name as in the GA

Craeft D1.1 23/105

commonly used to encode geospatial data. However, the GeoSPARQL standard has intentionally opted
for a more adaptable approach by using various encoding formats that can accommodate different
coordinate reference systems and geometry shapes. Thus, in CrO it is possible to represent the latitude
and longitude of a geographic point as a WKT literal, e.g., the longitude and latitude of the city of Pisa (IT)
are represented as:

“<http://www.opengis.net/def/crs/OGC/1.3/CRS84> POINT (10.401 43.715)”^^geosparql:wktLiteral

The classes and properties reported above are shown in Figure 4.

Figure 4 The classes and properties used to represent geospatial knowledge.

2.3.7. Modelling time-varying properties

The representations built with the CrO ontology are diachronic, in the sense that they do not refer to only
one point in time; rather, these representations take into account the changes that may occur in the
represented reality by modelling those changes via events. However, to be usable CrO does not require
representing every change through one or more events.

This Section presents a method to model changes without using events. This method is well-known in
knowledge representation and is called 4D-fluents, based on the name given to time-changing properties
by the fathers of AI. A more elaborate exposition of the method can be found in [14].

D1.1 The deliverable name as in the GA

Craeft D1.1 24/105

The basic assumption of the method is that every entity can be thought of as a four-dimension space-time
worm whose temporal parts are slices of the worm. For instance, the island of Chios was ruled by the
Republic of Genoa from 1363 to 1566 and by the Ottoman Empire from 1566 to 1912; in 1912 Chios
became part of Greece. We can then think of Chios as being an object constituted by at least three slices:

● chios-1, the Chios dominated by the Republic of Genoa and existed from 1363 to 1566,
● chios-2, the Chios dominated by the Ottomans and existed from 1566 to 1912, and
● chios-3, the Chios included in the Greek Republic and existed from 1912 to date.

Figure 5 below shows how Chios and one of the above three slices (chios-2) can be modelled using the
CrO. Green arrows are all labelled by the rdf:type property (tin-2 is the interval of existence of chios-
2, having tp21 (i.e., the year 1566) and tp22 (i.e., the year 1912) as the starting and end point,
respectively).

Figure 5 Chios and its time-varying properties.

The class ecrm:E92_Spacetime_Volume has temporal slices of things (the Chios Island in this case) as
instances. These instances are related to the object representing Chios by property ecrm:P10i_contains,
which is the inverse property of ecrm:P10_falls_within, while their spatial and temporal regions are
linked via properties ecrm:P161_has_spatial_projection and
ecrm:P160_has_temporal_projection, respectively.

2.4. Modelling processes and actions

2.4.1 Processes

A process is composed of interconnected steps. A step can be either an action performed by one or more
persons in the context of a craft, or something that happens without the direct intervention of the persons
involved in crafts, such as the growth of a plant or the cooling of a piece of material. We will use the term
“process event” for any phenomenon of the latter kind, to distinguish these phenomena from the much

D1.1 The deliverable name as in the GA

Craeft D1.1 25/105

more general and wider phenomena that are meant by the term “event” as it has been used thus far for
instance in narratives.

The steps in a process may be interconnected in many different ways: they may be serial or parallel; they
may be performed subject to the termination of other steps, or the occurrence of certain conditions, and
more. In the Mingei project, craft processes are modelled as (simplified) Unified Modelling Language
(UML, for short) activities. As the Mingei model proved adequate, the CRAEFT ontology will be an
extension of the Mingei ontology standing on the same basis. Accordingly, we will consider a process
structured as a directed hyper-graph whose nodes are called activity nodes and whose hyper-edges are
called transitions.

An activity node represents a piece of the actual work performed to the end of producing the process
output. An activity node may be a step, as defined above; or it may be a process in its own right, in fact, a
sub-process of the process where the node belongs. As customary, we will use two special action nodes,
the initial node and the final node, to properly represent the beginning and the end of processes. Note
that since a process may have sub-processes as parts, initial and final nodes may occur anywhere in a
process hypergraph.

A transition is used to manage the flow of execution between activity nodes, using the term “transition
tail” (or simply “tail”) for any node where the transition hyperedge originates and “transition head” (or
just “head”) for any node where the transition ends

We will use transitions of the following kinds:

● Simple, to directly connect one tail to one head;
● Decision, to represent decision points in processes; a decision has one tail and two or more heads,

each with an associated predicate;
● Merge, to represent the converging of several alternative paths in a single activity; a merge has

two or more tails and one head;
● Fork, to represent the division of a flow into two or more parallel flows; a fork has one tail and

two or more heads;
● Join, to represent the converging of several parallel paths in a single activity; a join has two or

more tails and one head.

Formally, the hypergraph of a process has a unique source (i.e., exactly one node with no incoming
hyperedges), a unique sink (i.e., exactly one node with no outgoing hyperedges) and a single component,
i.e., every node of the hypergraph is reachable from the source.

Activity nodes and transitions have an internal structure, illustrated in the remaining subsections of this
Section. For activity nodes, we will concentrate on actions, as events can be seen as very simple kinds of
actions.

2.4.2. Actions

In the Mingei ontology, actions were symbols with no further representation. In contrast, the CRAEFT
ontology represents actions in an articulated way, to provide a richer representation of crafts.

D1.1 The deliverable name as in the GA

Craeft D1.1 26/105

Generally, we view an action as an application of forces to some objects, performed by one or more
persons possibly with the aid of specific tools. From an ontological point of view, actions are temporal
entities called perdurants (for more details on perdurants, see for instance [15]); more specifically, actions are
events performed by agents endowed with intentions. Generally, the intention of the performer is a
proposition giving the state of affairs that the performer aims to bring about by executing the action.
Based on the intention of the performer, we can distinguish correct actions as those whose outcome
reflects the intention of the performer from the incorrect ones whose outcome does not reflect the
performer’s intention. An action can be incorrect, or fail, in many ways. For instance, the action of
inserting a chisel into a piece of wood may fail if the applied force is not sufficient for the chisel to
penetrate the wood, or if the applied force is excessive to break the chisel or the piece of wood. As the
representation of incorrect actions is not relevant for the present purposes, they will be disregarded, by
using the term “action” as a synonym for “correct action”, unless explicitly specified.

An action can also be uncertain, if (and only if) the intention of the action performer does not identify a
unique state of affairs. In more practical terms, the performed of an uncertain action has in mind several
potential outcomes, all of which are acceptable to them. For instance, considering again our previous
example, the performer may regard as acceptable any penetration of the chisel ranging from 2 to 5
millimetres, simply because the depth of the penetration depends on factors related to the particular
materials employed or to the circumstances in which the action is executed. Uncertain actions are very
relevant to the present purposes, as we observe that a great many, if not most actions involving physical
materials and dexterity do involve a certain amount of uncertainty. Uncertainty will be captured in action
schemas, introduced below.

Objects involved in actions have a certain number of characteristics that distinguish them from one
another. These characteristics can be usefully divided into two disjoint categories: time-independent and
time-dependent characteristics. The former are the characteristics that do not depend on time, such as
the identity of an object. In contrast, time-dependent characteristics may change over time, such as the
temperature, the position or the shape of an object. Amongst the time-independent characteristics, a
prominent role is played by the composition of an object, that is the relation of inherence that links an
object to other objects, called parts or components. In addition, we regard composition as time-
independent because an object is born composite and travels in time with the same components: if, at
any time, some components of an object are added or removed, a new object is obtained. In contrast, the
time-dependent characteristics of an object may vary without changing the identity of the object.
Collectively, the time-dependent characteristics of an object form the object state.

Based on these considerations, an action is modelled as a complex entity consisting of the following main
parts:

● the agents that act, called the performers;
● the entities that cause the action, called causing entities;
● the objects involved in the action called the affected objects, whose states are changed as a result

of the action;
● if any, the objects created by the action; these are the objects whose existence is a product of the

action. Created objects may be composite, in this case, their components are amongst the
affected objects, or they may be simple if the action just decomposes or breaks one affected
object;

● the action function, that is the function that connects the input of the action to its output. In
particular, an action function takes as input the causing entities and the initial states of the

D1.1 The deliverable name as in the GA

Craeft D1.1 27/105

affected entities and produces as output the final states of the affected entities and the
compositions and states of the created entities.

As an example, the action of inserting a chisel into a piece of wood by hitting it with a hammer consists
of:

● the person driving the hammer as a performer;
● the force with which the hammer is driven, as causing entities;
● the hammer, the chisel, and the piece of wood as affected objects; the action changes the position

of all these objects and may change their shape;
● the piece of wood with the chisel inserted in it is the created object;
● the action function associates the force and the initial state of the involved entities (hammer,

chisel and piece of wood) to the final states of these entities and the composition of the created
object.

It is important to keep in mind that the above conceptualisation is simply the vision of action from a craft
point of view, based on the principles of mechanics but ultimately tailored to the requirements set by the
project on the representative craft instances. Thus,

● the causing entities in an action do not include all world objects that may in any way exert a causal
role in the action, but only those entities whose causal role is relevant concerning the modelling
of the craft at hand;

● the affected objects in an action do not include all world entities that may in any way be altered
by the action, but only those entities whose participation in the action is relevant concerning the
modelling of the craft at hand;

● the representation of an object in terms of composition and state is not expected to provide a
complete model of the object but simply reflects the requirements of the project as to object
representation.

2.4.3. Schemas

Processes and their components are described by schemas. A schema of a phenomenon is a description
that captures the salient aspects of that phenomenon for a specific class of applications. Any occurrence
of that phenomenon is said to be an instance of the schema. Instances provide specific values for the
aspects encompassed in their corresponding schema. Schemas are created for descriptive and prescriptive
reasons:

● from a descriptive point of view, schemas are representations that help understand phenomena
in a general sense, before and independently from specific occurrences;

● from a prescriptive point of view, schemas help keep an information system under control, by
providing templates to which instances must adhere.

In CRAEFT, schemas are introduced for both kinds of reasons. Descriptively, they provide general
representations of crafts that highlight the main steps and their inter-relations, so that information
consumers can familiarise themselves with crafts following a top-down approach; prescriptively, they
allow managing the creation, storage and access of the representative craft instances, providing strong
constraints on how these crafts are organised and structured.

D1.1 The deliverable name as in the GA

Craeft D1.1 28/105

Craft process schemas are no exceptions: they are formal representations that capture the aspects of
processes that have been identified above. Thus, a process schema is a directed hypergraph composed of
activity node schemas and transition schemas, also following the structures identified above. In particular,

● an activity node schema can be a step schema or, recursively, a (sub)process schema. A step
schema can be an action schema or an event schema;

● a transition schema describes the conditions that control the flow of execution of instances of the
process. There are different types of transition schemas for each type of transition: simple
transition schema, decision transition schema, merge transition schema, fork transition schema
and join transition schema.

An action schema describes the types of entities involved in the action, each with its role. In addition, a
schema should also give the action function. The schema of a simple action, resulting in no creation but
just in a simple transformation, such as heating a piece of glass, is straightforward and its action function
can be expressed analytically as a mathematical formula yielding the temperature as a function over time.
However, realistic actions imply creations and complex transformations that cannot be expressed
analytically but can only be computed via simulation, once the inputs of the action, the causing entities
and the initial state of affected entities, are given. For representing complex action schemas, the CrO
adopts a twofold strategy:

1. Action schemas are categorised based on the entities they involve and create, and on the action
function, expressing the transformation that instance actions produce. That is, all (and only the)
actions classified into the same schema have the same involved and created entity types and their
transformations are applications of the same action function.

2. The action function is represented procedurally, i.e., as a piece of code of some programming
language that computes the output on a given input by simulation.

As already pointed out, an instance of an action schema is an action that satisfies two conditions:

1. It has caused, created, and affected entities, entities of the type described by the schema.
2. The transformation from the initial to the final states of affected entities is an application of the

action function associated with the schema.

Such an instance is called virtual action because it is not performed by human beings in a certain place at
a certain time, but only an abstraction simulated by a computational agent in abstract space and time. A
virtual action can then be enacted by an agent that performs it in a real setting, that is, at a given place
and at a given time. A virtual action can of course be enacted any number of times, each performed by
and agent and situated in its spatio-temporal region, different from the spatio-temporal region of all other
actions.

The same instantiation/enactment method can be applied to process schemas: by instantiating all action
and transition schemas in a process schema, a virtual process is obtained, which can then be enacted
giving rise to a process. In sum,

● process schemas are composed of step and transition schemas and are instantiated into virtual
processes, composed of virtual steps and virtual transitions, which are instances of the
corresponding schemas;

D1.1 The deliverable name as in the GA

Craeft D1.1 29/105

● virtual processes are composed of virtual steps and virtual transitions and are enacted into
processes, composed of steps and transitions, which are enactments of the corresponding virtual
steps and virtual transitions, respectively.

Instantiation is a one-to-many relation: a step schema can be instantiated into any number of virtual steps,
each determined by a different set of input parameters of the action function. Consequently, a process
schema can be instantiated into any number of virtual processes. Similarly, enactment is a one-to-many
relation: a virtual step can be enacted into any number of (real) steps, each determined by a different
place and time; consequently, a virtual process can be enacted into any number of (real) processes.

The following diagram illustrates the notions introduced so far.

2.4.4. Transitions

We will illustrate transitions by showing their usage in processes, through a running example. Let us
assume we wish to model the schema of a football match that is the final match of a competition,
therefore the match has to designate a winner. Each process of this kind can be modelled as having three
major sub-processes:

1. The first sub-process is regular time, consisting of two activities: first-half and second-half.
2. In case regular time ends with a tie, the match enters the over-time sub-process, also divided into

the first and second half.
3. In case also over-time ends with a tie, the match enters a penalty time sub-process, consisting of

two activities: two series of five penalties, one per team, followed, in case of a tie, by an unlimited
series of one penalty per team, until a winner is determined.

4. When a winner is determined, the match ends.

The process schema following this structure has three therefore major (sub)process schemas: regular time
schema, over time schema and penalty time schema, enclosed between initial and final activity nodes,
and interconnected by transitions that reflect the semantics of the process. Graphically:

https://app.diagrams.net/?page-id=WSaOzJ4e7rC5Aw-TBuVH&scale=auto#G1S6H4XyGZ0FERhrfZLwJLUHkSgANf5gvw

D1.1 The deliverable name as in the GA

Craeft D1.1 30/105

Figure 6 Example process schema.

The transition schema from the initial node to the regular-time sub-process is a simple transition schema,
i.e., a hyperedge with just one head node and one tail node. Simple transition schemas are drawn as
arrows. To represent the fact that over time only takes place in case regular time ends with a tie, a decision
transition schema is used, a hyperedge broken in the middle by a diamond whose incoming arc connects
the diamond to the tail node and whose outgoing arcs connect the diamond to the head nodes. Each
outgoing arc has a guard condition that is evaluated upon instantiating the schema, and the head node
whose guard condition evaluates to true is chosen as the next step of the process. In the example, the
decision transition has two head nodes, one guarded by the condition “tie”, and the other guarded by the
condition “not tie”. The meaning of transition is evident: if the match is not a tie, it ends; otherwise, the
Over Time sub-process, described by the Overt Time Schema, is executed. Upon instantiating the process
schema, the transition schema is instantiated as well, except that the instance transition is a simple
transition whose only head node corresponds to the guard that evaluates to true. In the example, there
are two transition schemas, performing the same test, but at two different stages of the process: the
second decision transition schema makes sure that, over time, if the match is not a tie, it ends, otherwise
the penalty time sub-process is executed.

Notice that the process schema uses a Merge transition schema to collect all the flows that lead to the
final node so that a unique final node is used. A Merge transition schema is drawn exactly as a decision
schema, except that it has two or more tails and a single head with no guarding predicate. Upon
instantiating the process, the merge transition is instantiated as well. Upon instantiating the process, a
Merge transition schema is instantiated by a simple transition, since a single path is always chosen.

The Regular Time and Over Time process Schemas have a very similar and very simple structure: the
connections between their activity nodes are just simple transitions, as Figure 7 below shows.

Figure 7 Regular-time and over-time process schemas.

A Penalty Time sub-process Schema has the structure given in Figure 8, whose meaning should be evident:

Figure 8 Penalty-time process schema.

https://app.diagrams.net/?page-id=alHllynUzcB55wiBpwxg&scale=auto#G1IPZNfDjiJxqtTjShZtNS3YhJ0sp2ooPV

D1.1 The deliverable name as in the GA

Craeft D1.1 31/105

Sub-processes connect to the nodes of the schema where they belong in the obvious way: the preceding
node connects to the initial node of the sub-process, which is always unique; the following node connects
to the final node of the sub-process, which is also always unique.

To specify concurrent flows, synchronisation transition schemas are used. There are two kinds of
synchronisations: forks and joins.

● A fork represents the splitting of a single flow into two or more concurrent flows. Consequently,
a fork transition schema has always one tail and at least two heads, each of which represents an
independent flow. The same structure is preserved in instances since concurrent flows are
supposed to be all executed simultaneously; hence fork transition schemas are instantiated by
fork transitions. Fork transition schemas (and their instances) are drawn as horizontal bars
annotated with the word “Fork”: the tail connects to the bar by an arc, while the bar is connected
to the heads by arcs (see figure below).

● Conversely, a join represents the synchronisation of two or more concurrent flows. Consequently,
a join transition schema has two or more tails, each of which ends an independent flow, and one
head node. The same structure is replicated at the instance level, for the reasons pointed out for
forks. Join transition schemas are drawn as bars, similar to fork nodes, as shown in Figure 9.

Figure 9 Fork and Join transition schemas.

The following figure presents an instance of the example process schema, a final match between the
Italian teams Milan and Inter, ending regular time with a tie and decided over time. Consequently, the
“tie” branch of the first decision transition schema is instantiated, leading to the instantiation of the over
time sub-process, and the “not tie” branch of the second decision transition schema is instantiated leading
to the final node, and the penalty time sub-process is not instantiated. Notice that the final Merge node
is instantiated as a simple transition, shown in Figure 10 as a single arrow. For brevity, we do not present
the instantiation of the two sub-processes.

Figure 10 A process instance.

2.5. An ontology of processes and actions

Process hypergraphs are represented in the CrO by two kinds of classes:

● the classes for nodes, holding the knowledge about activities, and

D1.1 The deliverable name as in the GA

Craeft D1.1 32/105

● the classes for transitions, holding the knowledge about connections amongst activities and the
flow control of activities.

These classes will be illustrated in the two subsections of this section, each time starting from those
relative to schemas and then moving on to those relative to schemas’ instances and finally to real ones.

2.5.1. Activities

2.5.1.1. Activity Schemas

Process schemas are instances of the class craeft:ProcessSchema, while activity node schemas are
instances of the class craeft:StepSchema. As explained in the previous Section, an instance of
craeft:StepSchema can be one of the following:

● event schema, an instance of class craeft:EventSchema, a subclass of craeft:StepSchema;
● action schema, an instance of class craeft:ActionSchema, a subclass of craeft:StepSchema;
● process schema, an instance of class craeft:ProcessSchema, a subclass of craeft:StepSchema.

Notice that craeft:StepSchema is the most general class of schemas, having craeft:ProcessSchema as
a subclass, to enable inclusion of processes as parts of other processes. This implies that process schemas
that are not part of any other process schema are anyway instances of craeft:StepSchema. This poses
no problem, as these schemas can be identified by inspecting the process composition property
craeft:hasStep, introduced below.

Process schemas are kinds of plans, that is, descriptions of structured courses of events and actions. The
CIDOC CRM offers the class ecrm:E29_Design_or_Procedure that “comprises documented plans for the
execution of actions in order to achieve a result of a specific quality, form or contents. In particular, it
comprises plans for deliberate human activities that may result in new instances of E71 Human-Made
Thing or for shaping or guiding the execution of an instance of E7 Activity”. All the above schemas satisfy
this description, therefore class craeft:StepSchema and its subclasses are subclasses of
ecrm:E29_Design_or_Procedure.

 craeft:StepSchema is a class

 craeft:StepSchema is a subclass of ecrm:E29_Design_or_Procedure

 craeft:EventSchema is a class

 craeft:EventSchema is a subclass of craeft:StepSchema

 craeft:ActionSchema is a class

 craeft:ActionSchema is a subclass of craeft:StepSchema

 craeft:ProcessSchema is a class

 craeft:ProcessSchema is a subclass of craeft:StepSchema

D1.1 The deliverable name as in the GA

Craeft D1.1 33/105

To connect a process schema to the steps it consists of, and, recursively, a sub-process schema to its sub-
steps, we introduce the property craeft:hasStep and its inverse craeft:isStepOf. For economy and
conceptual homogeneity, craeft:hasStep is also used for the composition of virtual and real processes,
using localisation axioms. This allows us having a single property for multiple, but analogous, uses, even
though it prevents direct mapping of craeft:hasStep to a property of CRM, as the CRM introduces three
properties for part-whole relationships:

 ecrm:P69_has_association_with, for part-whole relationships between instances of
ecrm:E29_Design_or_Procedure;

 ecrm:P148_has_component for part-whole relationships between instances of
ecrm:E89_Propositional_Object; and

 ecrm:P5_consists_of for part-whole relationships between instances of
ecrm:E3_Condition_State.

We should therefore make both craeft:hasStep and craeft:isStepOf sub-properties of a disjunction
of three CRM properties. But this is not supported by OWL 2 DL, which only provides object and data
properties as property expressions. In spite of this inconvenience, which applies also to the properties for
the composition of transitions (see Section 2.5.2. Transitions), the CrO prefers to use a single property.

 craeft:hasStep is an object property

 craeft:isStepOf is an object property

 craeft:isStepOf is inverse property of craeft:hasStep

The localisation axioms given next capture the fact that a process schema has always at least one schema
step. The converse does not hold for process schemas, as not every process schema is a sub-process
schema of another process schema, therefore the converse axioms are stated individually for each
subclass of craeft:SchemaStep.

 An instance of craeft:ProcessSchema is connected by craeft:hasStep only to instances of
craeft:StepSchema

 An instance of craeft:ProcessSchema is connected by craeft:hasStep to at least one
instance of craeft:StepSchema

 An instance of StepSchema is connected by craeft:isStepOf only to instances of
craeft:ProcessSchema

 An instance of craeft:EventSchema is connected by craeft:isStepOf to exactly one instance of
craeft:ProcessSchema

 An instance of craeft:ActionSchema is connected by craeft:isStepOf to exactly one instance of
craeft:ProcessSchema

 An instance of craeft:ProcessSchema is connected by craeft:isStepOf to at most one instance of
craeft:ProcessSchema

D1.1 The deliverable name as in the GA

Craeft D1.1 34/105

2.5.1.2. Virtual activities

The structure of process schemas is replicated for virtual processes, therefore craeft:VirtualStep is
the class of steps of virtual processes, further specialised in craeft:VirtualEvent,
craeft:VirtualAction and craeft:VirtualProcess. All instances of these classes are seen as plans,
similar to their corresponding schema, except those virtual entities are more complete plans. As a
consequence VirtualStep is a subclass of ecrm:E29_Design_or_Procedure.

 craeft:VirtualStep is a class

 craeft:VirtualStep is a subclass of ecrm:E29_Design_or_Procedure

 craeft:VirtualEvent is a class

 craeft:VirtualEvent is a subclass of craeft:VirtualStep

 craeft:VirtualAction is a class

 craeft:VirtualAction is a subclass of craeft:VirtualStep

 craeft:VirtualProcess is a class

 craeft:VirtualProcess is a subclass of craeft:VirtualStep

Properties craeft:hasStep and craeft:isStepOf are re-used for connecting virtual processes to their
steps, by localising it via apposite axioms, given next.

 An instance of craeft:VirtualProcess is connected by craeft:hasStep only to instances of
craeft:VirtualStep

 An instance of craeft:VirtualProcess is connected by craeft:hasStep to at least one instance of
craeft:VirtualStep

 An instance of craeft:VirtualStep is connected by craeft:isStepOf only to instances of
craeft:VirtualProcess

 An instance of craeft:VirtualEvent is connected by craeft:isStepOf to exactly one instance of
craeft:VirtualProcess

 An instance of craeft:VirtualAction is connected by craeft:isStepOf to exactly one instance of
craeft:VirtualProcess

 An instance of craeft:VirtualProcess is connected by craeft:isStepOf to at most one instance
of craeft:VirtualProcess

2.5.1.3. Physical activities

Finally, we axiomatise physical processes following the same pattern. As already pointed out,
craeft:Step is a subclass of narr:Fabula.

D1.1 The deliverable name as in the GA

Craeft D1.1 35/105

 craeft:Step is a class

 craeft:Step is a subclass of narr:Fabula

 craeft:ProcessEvent is a class

 craeft:ProcessEvent is a subclass of craeft:Step

 craeft:Action is a class

 craeft:Action is a subclass of craeft:Step

 craeft:Process is a class

 craeft:Process is a subclass of craeft:Step

Axioms for the localisation of craeft:hasStep and craeft:isStepOf to physical processes are given
next.

 An instance of craeft:Process is connected by craeft:hasStep only to instances of
craeft:Step

 An instance of craeft:Process is connected by craeft:hasStep to at least one instance of
craeft:Step

 An instance of craeft:Step is connected by craeft:isStepOf only to instances of
craeft:Process

 An instance of craeft:ProcessEvent is connected by craeft:isStepOf to exactly one instance
of craeft:Process

 An instance of craeft:Action is connected by craeft:isStepOf to exactly one instance of
craeft:Process

 An instance of craeft:Process is connected by the inverse of craeft:hasStep to at most one
instance of craeft:Process

2.5.1.4. Instantiation

We now axiomatize property craeft:instanceOf, which represents the instantiation relation between
virtual activities and the corresponding schemas. For convenience, we introduce also the inverse property
of craeft:instanceOf, craeft:hasInstance. These properties will also be used for transitions, via the
appropriate localisation axioms.

The best approximation that can be found in the CRM for this property, is property ecrm:P67_refers_to,
which “documents that an instance of E89 Propositional Object makes a statement about an instance of
E1 CRM Entity”. Indeed, a virtual step is an instance of ecrm:E73_Information_Object and therefore of
ecrm:E89_Propositional_Object.

D1.1 The deliverable name as in the GA

Craeft D1.1 36/105

 craeft:instanceOf is an object property

 craeft:instanceOf is a sub-property of ecrm:P67_refers_to

 craeft:hasInstance is an object property

 craeft:hasInstance is an inverse property of craeft:instanceOf

The following localisation axioms apply to the instantiation property.

 An instance of craeft:VirtualProcess is connected by craeft:instanceOf only to instances of
craeft:ProcessSchema

 An instance of craeft:VirtualProcess is connected by craeft:instanceOf to exactly one instance of
craeft:ProcessSchema

 An instance of craeft:ProcessSchema is connected by craeft:hasInstance only to instances of
craeft:VirtualProcess

 An instance of craeft:ProcessSchema is connected by craeft:hasInstance to at least one instance of

craeft:VirtualProcess

 An instance of craeft:VirtualAction is connected by craeft:instanceOf only to instances of
craeft:ActionSchema

 An instance of craeft:VirtualAction is connected by craeft:instanceOf to exactly one instance
of craeft:ActionSchema

 An instance of craeft:ActionSchema is connected by craeft:hasInstance only to instances
of craeft:VirtualAction

 An instance of craeft:ActionSchema is connected by craeft:hasInstance to at least one instance
of craeft:VirtualAction

 An instance of craeft:VirtualEvent is connected by craeft:instanceOf only to instances of
craeft:EventSchema

 An instance of craeft:VirtualEvent is connected by craeft:instanceOf to exactly one instance
of craeft:EventSchema

 An instance of craeft:EventSchema is connected by craeft:hasInstance only to instances of
craeft:VirtualEvent

 An instance of craeft:EventSchema is connected by craeft:hasInstance to at least one instance
of craeft:VirtualEvent

The axiom that models the relation between schemas and the corresponding virtual entities with respect
to the composition property is as follows:

Let VP be a virtual process and PS be a process schema such that VP is an instance of PS. Then,

D1.1 The deliverable name as in the GA

Craeft D1.1 37/105

1. For every virtual step VS that is a step of VP, there exists a step schema SS that is a step of VS, such
that VS is an instance of SS.

2. Conversely, for every step schema SS that is a step of PS, there exists a virtual step VS that is a step
of VP, such that VS is an instance of SS.

The axiom is in fact an abbreviation for three axioms, one for each of the three entities that can be a step:
event, action or process. Now, the cardinality axioms on instantiation guarantee that a virtual step is an
instance of exactly one schema, hence, given VP and VS above, there is a unique PS such that VP is an
instance of PS, and a unique SS such that VS is an instance of SS. It follows that the above axiom is
equivalent to the following:

Let VP be a virtual process and VS be a virtual step in VP. Then VP is an instance of the process schema PS
that has as step the step schema of VS.

This axiom can be expressed as an OWL 2 DL complex role inclusion axiom as follows:

 The chain formed by craeft:hasStep and craeft:instanceOf and craeft:isStepOf is a
subproperty of craeft:instanceOf

Unfortunately, this axiom makes craeft:instanceOf a composite property, on which no cardinality
axiom can be stated, lest a violation of the OWL 2 DL global restriction on simple roles. For this reason,
the axiom is not included in the CrO and the so lost knowledge is recovered procedurally

An important axiom on instantiation concerns the correct relation between the properties declared in an
action schema and the properties used in a virtual action that is an instance of that schema. In particular,
any property declared in an action schema via anyone of craeft:hasCausingEntityProperties,
craeft:hasAffectedEntityProperties, craeft:hasCeasedEntityProperties or
craeft:hasCreatedEntityProperties must be used in any instance of the schema in the appropriate
way. However, this axiom cannot be expressed in OWL 2 DL.

2.5.1.5. Enactment

We finally axiomatize enactment by property craeft:enactmentOf, which represents the enactment
relation between real activities and the corresponding virtual activities. For convenience, we introduce
also the inverse property of craeft:enactmentOf, craeft:isEnactedby. These properties will also be
used for transitions, via the appropriate localisation axioms.

The CRM offers property ecrm:P33_used_specific_technique, which “identifies a specific instance of
E29 Design or Procedure in order to carry out an instance of E7 Activity or parts of it”. We therefore make
enactmentOf a subproperty of ecrm:P33_used_specific_technique. Indeed, a virtual step is an
instance of ecrm:E29_Design_or_Procedure, while a step is an instance of narr:Fabula and therefore
of ecrm:E7_Activity.

 craeft:enactmentOf is an object property

 craeft:enactmentOf is a sub-property of ecrm:P33_used_specific_technique

D1.1 The deliverable name as in the GA

Craeft D1.1 38/105

 craeft:isEnactedby is an object property

 craeft:isEnactedby is an inverse property of craeft:enactmentOf

Enacted entities are performed by agents and situated in space and time. To represent these aspects, we
use the three CRM properties already mentioned in Section 2.3.2, namely ecrm:P14_carried_out_by,
which “describes the active participation of an instance of E39 Actor in an instance of E7 Activity”;
ecrm:P7_took_place_at, which “describes the spatial location of an instance of E4 Period”; and
ecrm:P4_has_time-span, which “associates an instance of E2 Temporal Entity with the instance of E52
Time-Span during which it was on-going”.

The following localisation axioms apply to the enactment property.

 An instance of craeft:Process is connected by craeft:enactmentOf only to instances of
craeft:VirtualProcess

 An instance of craeft:Process is connected by craeft:enactmentOf to exactly one instance
of craeft:VirtualProcess

 An instance of craeft:VirtualProcess is connected by craeft:isEnactedby only to instances
of craeft:Process

 An instance of craeft:VirtualProcess is connected by craeft:isEnactedby to at least one
instance of craeft:Process

 An instance of craeft:Action is connected by craeft:enactmentOf only to instances of
craeft:VirtualAction

 An instance of craeft:Action is connected by craeft:enactmentOf to exactly one instance of
craeft:VirtualAction

 An instance of craeft:VirtualAction is connected by craeft:isEnactedby only to instances
of craeft:Action

 An instance of craeft:VirtualAction is connected by craeft:isEnactedby to at least one
instance of craeft:Action

 An instance of craeft:ProcessEvent is connected by craeft:enactmentOf only to instances
of craeft:VirtualEvent

 An instance of craeft:ProcessEvent is connected by craeft:enactmentOf to exactly one instance
of craeft:VirtualEvent

 An instance of craeft:VirtualEvent is connected by craeft:isEnactedby only to instances
of craeft:ProcessEvent

 An instance of craeft:VirtualEvent is connected by craeft:isEnactedby to at least one instance
of craeft:ProcessEvent

D1.1 The deliverable name as in the GA

Craeft D1.1 39/105

The enactment axiom concerning activities models the relation between virtual and the corresponding
real entities with respect to the composition property. It is as follows:

Let P be a process and VP be a virtual process such that P is an enactment of VP. Then,

1. For every step S that is a step of P, there exists a virtual step VS that is a step of VP, such that S is
an enactment of VS.

2. Conversely, for every virtual step VS that is a step of VP, there exists a step S that is a step of P,
such that S is an enactment of VS.

Also in this case, the cardinality axioms on enactment guarantee that a step is the enactment of exactly
one virtual step, hence, given P and S above, there is a unique VP such that P is an enactment of VP, and
a unique VS such that S is an enactment of VS. It follows that the above axiom is equivalent to the
following:

Let P be a process and S be a step in P. Then P is an enactment of the virtual process VP that has as a step
the virtual step enacted by S.

This axiom can be expressed as an OWL 2 DL complex role inclusion axiom as follows:

 The chain formed by craeft:hasStep and craeft:enactmentOf and craeft:isStepOf is a
subproperty of craeft:enactmentOf

Unfortunately, this axiom makes craeft:enactmentOf a composite property, on which no cardinality
axiom can be stated, lest a violation of the OWL 2 DL global restriction on simple roles. For this reason,
the axiom is not included in the CrO.

2.5.1.6. Objects

Objects play a relevant role in actions, as they are the entities that actions create or transform. In the
CRM, class ecrm:E19_Physical_Object “comprises items of a material nature that are units for
documentation and have physical boundaries that separate them completely in an objective way from
other objects”. This definition captures the objects involved in crafts, which may be human-made
(instances of ecrm:E22_Human-Made_Object) or natural, therefore we will reuse it in the CrO to classify
any object that is involved in an action. Classes for specific kinds of objects, such as hammers or chisels,
will be introduced in due course upon modelling the actions in which these objects are involved. These
classes will all be subclasses of ecrm:E19_Physical_Object. In addition, we introduce:

● the class craeft:CompositeObject, a subclass of ecrm:E22_Human-Made_Object, having as
instances the objects created in actions by assembling in some way other objects. Even though
the way of creating those objects varies from action to action, the objects created are all instances
of craeft:CompositeObject. Also, the property for associating a composite object to its
component is taken directly from the CRM, and is the property ecrm:P46_is_composed_of,
which “associates an instance of E18 Physical Thing with another instance of E18 Physical Thing
that forms part of it”. Notice that ecrm:E22_Human-Made_Object is a subclass of
ecrm:E18_Physical_Thing.

D1.1 The deliverable name as in the GA

Craeft D1.1 40/105

 craeft:CompositeObject is a class

 craeft:CompositeObject is a subclass of ecrm:E22_Human-Made_Object

● The class craeft:RigidObject, a subclass of ecrm:E22_Human-Made_Object, having as
instances the objects made of rigid materials, and its complement craeft:DeformableObject,
also a subclass of ecrm:E22_Human-Made_Object, having as instances the objects made of
deformable materials. This distinction must be communicated to the simulator, so it is a
requirement that the ontology can make it. These two classes are disjoint. The property for
associating an object to its material (instance of class ecrm:E57_Material) is taken directly from
the CRM and it is the property ecrm:P45_consists_of.

 craeft:RigidObject is a class

 craeft:RigidObject is a subclass of ecrm:E22_Human-Made_Object

 craeft:DeformableObject is a class

 craeft:DeformableObject is a subclass of ecrm:E22_Human-Made_Object

 craeft:Class RigidObject is disjoint from class craeft:DeformableObject

The time-independent characteristics of objects that are relevant to the present purposes are material
properties, which include several properties, depending on the kind of object they apply to. In addition,
shape is a time-independent property of rigid objects, while the same does not apply to deformable
objects. To represent the connection between an object and its time-independent characteristics, we
introduce two properties, craeft:hasMaterialProperties and craeft:hasShape, the domain of the
former being ecrm:E18_Physical_Thing, while that of the latter is craeft:RigidObject. The range of
these properties is the CRM class ecrm:E31_Document, which “comprises identifiable immaterial items
that make propositions about reality. These propositions may be expressed in text, graphics, images,
audiograms, videograms or by other similar means”. The reason for this choice is that time-independent
characteristics of objects are exclusively used to be produced or consumed by the simulator, therefore
the CrO just provides the machinery to hold documents where these characteristics are held, in a format
that is appropriate for the simulator. For this reason, both craeft:hasMaterialProperties and
craeft:hasShape are sub-properties of the CRM property ecrm:P70i_is_documented_in, which
“describes the CRM Entities documented by instances of E31 Document” and has class
ecrm:E1_CRM_Entity as domain, therefore it applies to any individual, while its range is
ecrm:E31_Document. For the same reason, both properties are mandatory and functional.

 craeft:hasShape is an object property

 craeft:hasShape is a sub-property of ecrm:P70i_is_documented_in

 The domain of craeft:hasShape is class craeft:RigidObject

 The range of craeft:hasShape is class ecrm:E31_Document

D1.1 The deliverable name as in the GA

Craeft D1.1 41/105

 An instance of craeft:RigidObject is connected by property craeft:hasShape to exactly one
instance of ecrm:E31_Document

 craeft:hasMaterialProperties is an object property

 craeft:hasMaterialProperties is a sub-property of ecrm:P70i_is_documented_in

 The domain of craeft:hasMaterialProperties is class ecrm:E18_Physical_Thing

 The range of craeft:hasMaterialProperties is class ecrm:E31_Document

 An instance of ecrm:E18_Physical_Thing is connected by property

craeft:hasMaterialProperties to exactly one instance of ecrm:E31_Document

To represent object states, holding the time-dependent characteristics of objects, we introduce the
generic class craeft:State, regardless of the object’s type. craeft:State is a subclass of the CRM class
ecrm:E3_Condition_State, which “comprises the states of objects characterised by a certain condition
over a time-span”.

 craeft:State is a class

 craeft:State is a subclass of ecrm:E3_Condition_State

Any object is linked to its state through the property hasState, a subproperty of
ecrm:P44_has_condition. The inverse property of hasState, isStateOf, is also introduced for
convenience. An object can have zero, one or many states, while a state is the state of exactly one object.

 craeft:hasState is a subproperty of ecrm:P44_has_condition

 The domain of craeft:hasState is ecrm:E18_Physical_Object

 The range of craeft:hasState is craeft:State

 craeft:isStateOf is an object property

 craeft:isStateOf is the inverse of property craeft:hasState

 An instance of craeft:State is connected by property craeft:isStateOf to exactly one
instance of ecrm:E18_Physical_Object

Similarly to time-independent characteristics of objects, object states are no further represented in the
CrO, therefore we use the CRM class ecrm:E31_Document to hold the states of objects and the CRM
property ecrm:P70i_is_documented_in, to link a state to the information resource holding an
appropriate representation of its value.

D1.1 The deliverable name as in the GA

Craeft D1.1 42/105

2.5.1.7. Actions

An action is typed in three different ways (see Figure 119):

● By a function in a standardised vocabulary of functions; the vocabulary is captured by class
craeft:ActionFunction, subclass of ecrm:E55_Type; these individuals are linked to the action
by using the property craeft:hasActionFunction, ranging over the action function class.

● By one of the following action types: Add, Subtract, Interlock, Transform. Each of these types is
represented by an individual, instance of class craeft:ActionType that is a subclass of
ecrm:E55_Type; these individuals are linked to the action by using the property
craeft:hasActionType, ranging over the action type class.

● By one or more of the six Archimedean simple machines (e.g. Lever, Wheel and axle, Pulley,
Inclined plane, Wedge, Screw) or a physical or chemical agent using the property
craeft:hasMachineType. The Archimedean simple machines are individuals, instances of the
class craeft:MachineType that is a subclass of ecrm:E55_Type.

Figure 11 Typing of actions.

These properties are all subproperties of ecrm:P2_has_type and the same value for all virtual actions
that are instances of the same action schema and, consequently, for all real actions that enact these virtual
actions. Therefore, they are associated with a schema action and not replicated in virtual and (real)
actions.

 craeft:ActionFunction is a class

 craeft:ActionFunction is a subclass of ecrm:E55_Type

 craeft:eafunction1 is an instance of the class craeft:ActionFunction

 …

 craeft:eafunctionN is an instance of the class craeft:ActionFunction

9 For readability, the prefix craeft: is omitted in all Figures.

D1.1 The deliverable name as in the GA

Craeft D1.1 43/105

 craeft:hasActionFunction is an object property

 craeft:hasActionFunction is a subproperty of ecrm:P2_has_type

 The domain of craeft:hasActionFunction is class craeft:ActionSchema

 The range of craeft:hasActionFunction is class craeft:ActionFunction

 craeft:ActionType is a class

 craeft:ActionType is a subclass of ecrm:E55_Type

 craeft:add is an instance of class craeft:ActionType

 craeft:subtract is an instance of class craeft:ActionType

 craeft:interlock is an instance of class craeft:ActionType

 craeft:transform is an instance of class craeft:ActionType

 craeft:hasActionType is an object property

 craeft:hasActionType is a subproperty of ecrm:P2_has_type

 The domain of craeft:hasActionType is class craeft:ActionSchema

 The range of craeft:hasActionType is class craeft:ActionType

 craeft:MachineType is a class

 craeft:MachineType is a subclass of ecrm:E55_Type

 craeft:leverMachineType is an instance of the class craeft:MachineType

 craeft:wedgeMachineType is an instance of the class craeft:MachineType

 craeft:ScrewMachineType is an instance of the class craeft:MachineType

 craeft:InclinedPlanMachineType is an instance of class craeft:MachineType

 craeft:PulleyMachineType is an instance of the class craeft:MachineType

 craeft:WheelAxleMachineType is an instance of the class craeft:MachineType

 craeft:PhysicalAgent is an instance of the class craeft:MachineType

 craeft:ChemicalAgent is an instance of the class craeft:MachineType

 hasMach craeft:ineType is an object property

 craeft:hasMachineType is a subproperty of ecrm:P2_has_type

D1.1 The deliverable name as in the GA

Craeft D1.1 44/105

 The domain of craeft:hasMachineType is class craeft:ActionSchema

 The range of craeft:hasMachineType is class craeft:MachineType

In addition to this characterisation, an action schema gives the entities involved in the action function.
Since these entities vary from action to action and are not known a priori, action schemas use properties
to achieve their goal. Specifically:

● Property craeft:hasCausingEntityProperties is used for indicating the properties of any
virtual action that instantiates the schema giving the causing entities. For instance, since the
action of hitting a chisel with a hammer has just one causing entity, i.e., the force applied to the
hammer, then the corresponding action schema has just one property associated with it by the
craeft:hasCausingEntityProperties property, say craeft:hasForce, that associates any
virtual action that instantiates the schema with a force. An action has at least one causing entity,
so property craeft:hasCausingEntityProperties is mandatory.

● Property craeft:hasAffectedEntityProperties is used similarly for indicating the properties
of any virtual action that instantiates the schema giving the affected entities. For instance, since
the action of hitting a chisel with a hammer has three affected entities, i.e., the hammer, the chisel
and the piece of wood, then the corresponding action schema has three properties associated
with it by the craeft:hasTransformedEntityProperties property, say craeft:hasHammer,
craeft:hasChisel and craeft:hasPieceOfWood, that associates any virtual action that
instantiates the schema with the hammer, the chisel and the piece of wood that are used in the
action, respectively. An action may have zero, one or more affected entities.

These properties have craeft:ActionSchema as domain and rdf:Property as range (see Figure 12).

Figure 12 Domain and range of Action Schema properties.

The association between a virtual action and its newly created entities is captured by a single property,
named produces, used in all action schemas.

 craeft:hasCausingEntityProperties is an object property

 The domain of craeft:hasCausingEntityProperties is class craeft:ActionSchema

 The range of craeft:hasCausingEntityProperties is class rdf:Property

D1.1 The deliverable name as in the GA

Craeft D1.1 45/105

 An instance of craeft:ActionSchema is connected by craeft:hasCausingEntityProperties
to at least one instance of class rdf:Property

 craeft:hasAffectedEntityProperties is an object property

 The domain of craeft:hasAffectedEntityProperties is class craeft:ActionSchema

 The range of craeft:hasAffectedEntityProperties is class rdf:Property

 craeft:produces is an object property

 The domain of craeft:produces is class craeft:VirtualAction

 The range of craeft:produces is class ecrm:E19_Physical_Object

A virtual action is represented using the properties specified in the corresponding action schema. In
addition to those, a virtual action is associated with the affected entities’ states before and after the
action. To this end, properties craeft:AESBefore and craeft:AESAfter are introduced in the CrO, both
having craeft:VirtualAction as domain and craeft:State as range. Each state associated with a
virtual action via any one of these properties is also associated with the entity it is a state of via property
craeft:isStateOf, introduced in the previous Section.

 craeft:AESBefore is an object property

 The domain of craeft:AESBefore is class craeft:VirtualAction

 The range of craeft:AESBefore is class craeft:State

 craeft:AESAfter is an object property

 The domain of craeft:AESAfter is class craeft:VirtualAction

 The range of craeft:AESAfter is class craeft:State

The representation of (real) actions does not require the introduction of any additional class or property,
since action is an element of the fabula of a narrative, and the ontology of narratives introduced in Section
2.3. The Narrative Ontology provides the necessary machinery for representing actions.

2.5.2. Transitions

Transition schemas are instances of class craeft:TransitionSchema. craeft:TransitionSchema has
the following subclasses, capturing schemas of the kind of transitions introduced in the previous Section:

● craeft:SimpleTransitionSchema,
● craeft:DecisionTransitionSchema,
● craeft:MergeTransitionSchema,
● craeft:ForkTransitionSchema and

D1.1 The deliverable name as in the GA

Craeft D1.1 46/105

● craeft:JoinTransitionSchema.

Also transitions schemas are plans, therefore craeft:TransitionSchema is a subclass of
ecrm:E29_Design_or_Procedure.

 craeft:TransitionSchema is a class

 craeft:TransitionSchema is a subclass of ecrm:E29_Design_or_Procedure

 craeft:SimpleTransitionSchema is a class

 craeft:SimpleTransitionSchema is a subclass of craeft:TransitionSchema

 craeft:DecisionTransitionSchema is a class

 craeft:DecisionTransitionSchema is a subclass of craeft:TransitionSchema

 craeft:MergeTransitionSchema is a class

 craeft:MergeTransitionSchema is a subclass of craeft:TransitionSchema

 craeft:ForkTransitionSchema is a class

 craeft:ForkTransitionSchema is a subclass of craeft:TransitionSchema

 craeft:JoinTransitionSchema is a class

 craeft:JoinTransitionSchema is a subclass of craeft:TransitionSchema

Similarly, virtual transition classes are introduced to represent the different kinds of virtual transitions
that may occur in a virtual process. As pointed out in Section 2, Description and Merge transition schemas
are instantiated as simple virtual transitions, therefore there are no classes for Decision virtual transitions
and for Merge virtual transitions. For the same reasons given for craeft:TransitionSchema, also
craeft:VirtualTransition is a subclass of ecrm:E29_Design_or_Procedure.

 craeft:VirtualTransition is a class

 craeft:VirtualTransition is a subclass of ecrm:E29_Design_or_Procedure

 craeft:SimpleVirtualTransition is a class

 craeft:SimpleVirtualTransition is a subclass of craeft:VirtualTransition

 craeft:ForkVirtualTransition is a class

 craeft:ForkVirtualTransition is a subclass of craeft:VirtualTransition

 craeft:JoinVirtualTransition is a class

D1.1 The deliverable name as in the GA

Craeft D1.1 47/105

 craeft:JoinVirtualTransition is a subclass of craeft:VirtualTransition

Finally, (real) transition classes are introduced to model transitions occurring in (real) processes. These
classes are all subclasses of ecrm:E5_Event, since transitions have a more temporally and semantically
limited scope than activities: typically, transitions do not extend in time and do not decompose in sub-
elements, while processes can do both.

 craeft:Transition is a class

 craeft:Transition is a subclass of ecrm:E5_Event

 craeft:SimpleTransition is a class

 craeft:SimpleTransition is a subclass of craeft:Transition

 craeft:ForkTransition is a class

 craeft:ForkTransition is a subclass of craeft:Transition

 craeft:JoinTransition is a class

 craeft:JoinTransition is a subclass of craeft:Transition

The following axioms localise instantiation properties craeft:instanceOf and craeft:hasInstance to
the various kinds of transitions.

 An instance of craeft:SimpleVirtualTransition is connected by craeft:instanceOf only to
instances of craeft:SimpleTransitionSchema or craeft:DecisionTransitionSchema or
craeft:MergeTransitionSchema

 An instance of craeft:SimpleVirtualTransition is connected by instanceOf to exactly one
instance of craeft:SimpleTransitionSchema or craeft:DecisionTransitionSchema or
craeft:MergeTransitionSchema

 An instance of craeft:SimpleTransitionSchema is connected by craeft:hasInstance only
to instances of craeft:SimpleVirtualTransition

 An instance of craeft:SimpleTransitionSchema is connected by craeft:hasInstance to at
least one instance of craeft:SimpleVirtualTransition

 An instance of craeft:DecisionTransitionSchema is connected by craeft:hasInstance only
to instances of craeft:SimpleVirtualTransition

 An instance of craeft:DecisionTransitionSchema is connected by craeft:hasInstance to
at least one instance of craeft:SimpleVirtualTransition

 An instance of craeft:MergeTransitionSchema is connected by craeft:hasInstance only to

D1.1 The deliverable name as in the GA

Craeft D1.1 48/105

instances of craeft:SimpleVirtualTransition

 An instance of craeft:MergeTransitionSchema is connected by craeft:hasInstance to at
least one instance of craeft:SimpleVirtualTransition

 An instance of craeft:ForkVirtualTransition is connected by craeft:instanceOf only to
instances of craeft:ForkTransitionSchema

 An instance of craeft:ForkVirtualTransition is connected by craeft:instanceOf to
exactly one instance of craeft:ForkTransitionSchema

 An instance of craeft:ForkTransitionSchema is connected by craeft:hasInstance only to
instances of craeft:ForkVirtualTransition

 An instance of craeft:ForkTransitionSchema is connected by craeft:hasInstance to at
least one instance of craeft:ForkVirtualTransition

 An instance of craeft:JoinVirtualTransition is connected by craeft:instanceOf only to
instances of craeft:JoinTransitionSchema

 An instance of craeft:JoinVirtualTransition is connected by craeft:instanceOf to
exactly one instance of craeft:JoinTransitionSchema

 An instance of craeft:JoinTransitionSchema is connected by craeft:hasInstance only to
instances of craeft:JoinVirtualTransition

 An instance of craeft:JoinTransitionSchema is connected by craeft:hasInstance to at
least one instance of craeft:JoinVirtualTransition

The following axioms localise enactment properties craeft:enactmentOf and craeft:isEnactedBy to
the various kinds of transitions.

 An instance of craeft:SimpleTransition is connected by craeft:enactmentOf only to
instances of craeft:SimpleVirtualTransition

 An instance of craeft:SimpleTransition is connected by craeft:enactmentOf to exactly one
instance of craeft:SimpleVirtualTransition

 An instance of craeft:SimpleVirtualTransition is connected by craeft:isEnactedBy only
to instances of craeft:SimpleTransition

 An instance of craeft:SimpleVirtualTransition is connected by craeft:isEnactedBy to at
least one instance of craeft:SimpleTransition

 An instance of craeft:ForkTransition is connected by craeft:enactmentOf only to instances
of craeft:ForkVirtualTransition

 An instance of craeft:ForkTransition is connected by craeft:enactmentOf to exactly one

D1.1 The deliverable name as in the GA

Craeft D1.1 49/105

instance of craeft:ForkVirtualTransition

 An instance of craeft:ForkVirtualTransition is connected by craeft:isEnactedBy only to
instances of craeft:ForkTransition

 An instance of craeft:ForkVirtualTransition is connected by craeft:isEnactedBy to at
least one instance of craeft:ForkTransition

 An instance of craeft:JoinTransition is connected by craeft:enactmentOf only to instances
of craeft:JoinVirtualTransition

 An instance of craeft:JoinTransition is connected by craeft:enactmentOf to exactly one
instance of craeft:JoinVirtualTransition

 An instance of craeft:JoinVirtualTransition is connected by craeft:isEnactedBy only to
instances of craeft:JoinTransition

 An instance of craeft:JoinVirtualTransition is connected by craeft:isEnactedBy to at
least one instance of craeft:JoinTransition

We now introduce two general properties to model the structure of transitions. Since a transition models
a directed hyperedge, it has a set of nodes as the tail and a set of nodes as the head. We use the properties
craeft:hasTail and craeft:hasHead to represent the nodes that are in the tail or the head of
transitions, respectively. For convenience, we also introduce the inverses craeft:isTailOf and
craeft:isHeadOf. Following the modelling style adopted so far, we will reuse these two properties for
transition schemas, and for virtual and real transitions, by giving the appropriate localisation axioms. For
the same reasons pointed out for property craeft:hasStep (see Section 2.5.1.1. Activity Schemas), it is
not possible to map these properties to the CRM. Both craeft:hasTail and craeft:hasHead are
properties giving the composition of transitions. However, they apply to transition schemas and virtual
transitions, which are instances of ecrm:E29_Design_or_procedure, and to transitions, which are
instances of ecrm:E5_Event. Now, the CRM uses property ecrm:P106_is_composed_of for the
composition of symbolic objects, including plans, and ecrm:P5_consists_of for the composition of
temporal entities, including events. Thus, we should relate craeft:hasTail and craeft:hasHead to a
disjunction of CRM properties; unfortunately, this kind of property expressions are not supported by OWL
2 DL.

Notice that a transition may have another transition as tail or head, as illustrated by the football match
example given in Section 2.4.4. Transitions. This situation may be avoided by introducing “dummy” activity
nodes, corresponding to no action, created for the sole purpose of enclosing transitions between activity
nodes. This would be necessary if transitions were modelled as properties, as it is not possible to have
properties of properties. However, transitions are modelled as classes hence the introduction of such
dummy activity nodes is not necessary.

 craeft:hasHead is an object property

 craeft:isHeadOf is an object property

D1.1 The deliverable name as in the GA

Craeft D1.1 50/105

 craeft:isHeadOf is an inverse property of craeft:hasHead

 craeft:hasTail is an object property

 craeft:isTailOf is an object property

 craeft:isTailOf is an inverse property of craeft:hasTail

The classes and properties specific to transition kinds are introduced next.

2.5.2.1 Simple transitions

A simple transition represents the sequential, unconditional passage from one step (the input step) to
another one (the output step). This structure applies to all three levels at which simple transitions are
represented (i.e., to instances of craeft:SimpleTransitionSchema, to instances of
craeft:SimpleVirtualTransition and to instances of craeft:SimpleTransition) and can be
modelled by appropriately axiomatizing the properties craeft:hasHead and craeft:hasTail already
introduced. In particular:

● A simple transition schema has exactly one tail and one head, which can be a step schema or a
transition schema. Conversely, a step schema or a transition schema can be the tail or the head
of at most one transition schema, of whatever kind.

 An instance of craeft:SimpleTransitionSchema is connected craeft:by hasTail only to
instances of (craeft:StepSchema union craeft:TransitionSchema)

 An instance of craeft:SimpleTransitionSchema is connected by craeft:hasTail to exactly one
instance of (craeft:StepSchema union craeft:TransitionSchema)

 An instance of craeft:StepSchema is connected by craeft:isTailOf to at most one instance of class
craeft:TransitionSchema

 An instance of craeft:TransitionSchema is connected by craeft:isTailOf to at most one
instance of class craeft:TransitionSchema

 An instance of craeft:SimpleTransitionSchema is connected by craeft:hasHead only to
instances of (craeft:StepSchema union craeft:TransitionSchema)

 An instance of craeft:SimpleTransitionSchema is connected by craeft:hasHead to exactly one
instance of (craeft:StepSchema union craeft:TransitionSchema)

 An instance of craeft:StepSchema is connected by craeft:isHeadOf to at most one instance of class
craeft:TransitionSchema

 An instance of craeft:TransitionSchema is connected by craeft:isHeadOf to at most one
instance of class craeft:TransitionSchema

● A simple virtual transition has exactly one tail and one head, which can be a virtual step or a virtual
transition. Conversely, a virtual step or a virtual transition can be the tail or the head of at most

D1.1 The deliverable name as in the GA

Craeft D1.1 51/105

one virtual transition, of whatever kind.

 An instance of craeft:SimpleVirtualTransition is connected by craeft:hasTail only to
instances of (craeft:VirtualStep union craeft:VirtualTransition)

 An instance of craeft:SimpleVirtualTransition is connected by craeft:hasTail to exactly one
instance of (craeft:VirtualStep union craeft:VirtualTransition)

 An instance of craeft:VirtualStep is connected by craeft:isTailOf to at most one instance of
class craeft:VirtualTransition

 An instance of craeft:VirtualTransition is connected by craeft:isTailOf to at most one
instance of class craeft:VirtualTransition

 An instance of craeft:SimpleVirtualTransition is connected by craeft:hasHead only to
instances of (craeft:VirtualStep union craeft:VirtualTransition)

 An instance of craeft:SimpleVirtualTransition is connected by craeft:hasHead to exactly one
instance of (craeft:VirtualStep union craeft:VirtualTransition)

 An instance of craeft:VirtualStep is connected by craeft:isHeadOf to at most one instance of
class craeft:VirtualTransition

 An instance of craeft:VirtualTransition is connected by craeft:isHeadOf to at most one
instance of class craeft:VirtualTransition

● A simple transition has exactly one tail and one head, which can be a step or a transition.
Conversely, a step or a transition can be the tail or the head of at most one transition, of whatever
kind.

 An instance of craeft:SimpleTransition is connected by craeft:hasTail only to instances of
(craeft:Step union craeft:Transition)

 An instance of craeft:SimpleTransition is connected by craeft:hasTail to exactly one instance
of (craeft:Step union craeft:Transition)

 An instance of craeft:Step is connected by craeft:isTailOf to at most one instance of class
craeft:Transition

 An instance of craeft:Transition is connected by craeft:isTailOf to at most one instance of class
craeft:Transition

 An instance of craeft:SimpleTransition is connected by craeft:hasHead only to instances of
(craeft:Step union craeft:Transition)

 An instance of craeft:SimpleTransition is connected by craeft:hasHead to exactly one instance
of (craeft:Step union craeft:Transition)

 An instance of craeft:Step is connected by craeft:isHeadOf to at most one instance of class
craeft:Transition

D1.1 The deliverable name as in the GA

Craeft D1.1 52/105

 An instance of craeft:Transition is connected by craeft:isHeadOf to at most one instance of class
craeft:Transition

2.5.2.2. Decision transitions

A decision transition represents the selection of one of several alternatives, based on the evaluation of a
predicate. Consequently, decision transition schemas have one tail schema and two or more head
schemas, each associated with a predicate. In contrast, virtual decision transitions have one tail and one
head, because they are instances of schemas in which the alternative has been already selected. Similarly,
decision transitions have only one head and one tail. In addition to properties hasTail and hasHead, we
use:

 class craeft:DTAlternativeSchema to represent each alternative in a decision transition
schema; craeft:DTAlternativeSchema is a subclass of ecrm:E29_Design_or_Procedure, as its
instances represents parts of plans;

 property craeft:hasAlternative to associate a decision transition schema to each alternative;
craeft:hasAlternative is a subproperty of ecrm:P69_has_association_with, which as
already remarked is the CRM composition property for plans;

 class craeft:Predicate to represent the predicate associated to each alternative; also
craeft:Predicate is a subclass of ecrm:E29_Design_or_Procedure, as its instances represents
parts of plans;

 properties craeft:leadsTo and craeft:hasPredicate to associate each alternative to a tail of
the schema and to a predicate, respectively. Each of these properties is a sub-property of
ecrm:P69_has_association_with, as they connect plans to their parts. Notice that the link
between a decision transition schema and each of its heads, which would be represented by
property craeft:hasHead, could be deduced from the composition of craeft:hasAlternative
and craeft:leadsTo by a complex role inclusion axiom. However, the inclusion of this axiom in
the CrO would make craeft:hasHead a composite property, on which no cardinality axiom can
be stated, lest a violation of the OWL 2 DL global restriction on simple roles. Since localisation of
craeft:hasHead does require cardinality axioms, the complex role inclusion axiom is not included
in the CrO. As a consequence, the knowledge on heads of Decision Transition Schemas is
recovered procedurally.

The linguistic expression of a predicate is represented by a string of characters, which gives the expression
in any convenient implementation language. That expression is associated to an instance of class
craeft:Predicate by property ecrm:P190_has_symbolic_content.

The following Figure illustrates the just described representation of decision transition schemas,
axiomatized next:

D1.1 The deliverable name as in the GA

Craeft D1.1 53/105

Figure 13 Representation of alternatives in Decision Transition Schemas.

 craeft:DTAlternativeSchema is a class

 craeft:DTAlternativeSchema is a subclass of E29_Design_or_Procedure

 craeft:leadsTo is an object property

 craeft:leadsTo is a subproperty of ecrm:P69_has_association_with

 The domain of craeft:leadsTo is class craeft:DTAlternativeSchema

 The range of craeft:leadsTo is class (craeft:StepSchema union craeft:TransitionSchema)

 An instance of craeft:DTAlternativeSchema is connected by craeft:leadsTo to exactly one
instance of (craeft:StepSchema union craeft:TransitionSchema)

 An instance of craeft:StepSchema is connected by the inverse of craeft:leadsTo to at most one
instance of craeft:DTAlternativeSchema

 An instance of craeft:TransitionSchema is connected by the inverse of craeft:leadsTo to at most
one instance of craeft:DTAlternativeSchema

 craeft:Predicate is a class

 craeft:Predicate is a subclass of ecrm:E29_Design_or_Procedure

 craeft:hasPredicate is an object property

 craeft:hasPredicate is a subproperty of ecrm:P69_has_association_with

 The domain of craeft:hasPredicate is class craeft:DTAlternativeSchema

 The range of craeft:hasPredicate is class craeft:Predicate

 An instance of craeft:DTAlternativeSchema is connected by craeft:hasPredicate to exactly
one instance of craeft:Predicate

 An instance of craeft:Predicate is connected by the inverse of craeft:hasPredicate to

https://app.diagrams.net/?page-id=46UTacDo5seRZdueZ3Wv&scale=auto#G1crSaG58q55hph5G1gIm3MXEDjfO0JMLz

D1.1 The deliverable name as in the GA

Craeft D1.1 54/105

exactly one instance of craeft:DTAlternativeSchema

 craeft:hasAlternative is an object property

 craeft:hasAlternative is a subproperty of ecrm:P69_has_association_with

 The domain of craeft:hasAlternative is class craeft:DecisionTransitionSchema

 The range of craeft:hasAlternative is class craeft:DTAlternativeSchema

 An instance of craeft:DecisionTransitionSchema is connected by craeft:hasAlternative

to at least two instances of craeft:DTAlternativeSchema

 An instance of craeft:DTAlternativeSchema is connected by the inverse of

craeft:hasAlternative to exactly one instance of craeft:DecisionTransitionSchema

We now localise craeft:hasTail and craeft:hasHead to decision transition schemas. A decision
transition schema has a single tail, which is either a step schema or a transition schema, and two or more
heads, which result from the composition of properties craeft:hasAlternatives and craeft:leadsTo.
Conversely, a step schema or a transition schema is the tail of at most one decision transition schema,
and the head of at most one decision transition schema.

 An instance of craeft:DecisionTransitionSchema is connected by craeft:hasTail only to
instances of (craeft:StepSchema union craeft:TransitionSchema)

 An instance of craeft:DecisionTransitionSchema is connected by craeft:hasTail to exactly
one instance of (craeft:StepSchema union craeft:TransitionSchema)

2.5.2.3. Merge transitions

A merge transition schema brings together two or more alternative paths. Consequently, it has two or
more tails and exactly one head, which can be a step schema or a transition schema.

 An instance of craeft:MergeTransitionSchema is connected by craeft:hasTail only to
instances of (craeft:StepSchema union craeft:TransitionSchema)

 An instance of craeft:MergeTransitionSchema is connected by craeft:hasTail to at lest two
instances of (craeft:StepSchema union craeft:TransitionSchema)

 An instance of craeft:MergeTransitionSchema is connected by craeft:hasHead only to
instances of (craeft:StepSchema union craeft:TransitionSchema)

 An instance of craeft:MergeTransitionSchema is connected by craeft:hasHead to exactly
one instance of (craeft:StepSchema union craeft:TransitionSchema)

D1.1 The deliverable name as in the GA

Craeft D1.1 55/105

2.5.2.4. Fork transitions

A fork transition has a single tail and to or more heads, similar to a decision transition, except that there
are no predicates associated with heads because all the paths outcoming from a fork are supposed to be
executed, in parallel. Consequently, the same structure is replicated for fork transition schemas. In
contrast, to represents fork transitions, whether virtual or real, it is sufficient to properly localise
properties craeft:hasTail and craeft:hasHead.

● A fork transition schema has exactly one tail and two or more heads, which can be step schemas
or transition schemas.

 An instance of craeft:ForkTransitionSchema is connected by craeft:hasTail only to

instances of (craeft:StepSchema union craeft:TransitionSchema)

 An instance of craeft:ForkTransitionSchema is connected by craeft:hasTail to exactly one
instance of (craeft:StepSchema union craeft:TransitionSchema)

 An instance of craeft:ForkTransitionSchema is connected by craeft:hasHead only to
instances of (craeft:StepSchema union craeft:TransitionSchema)

 An instance of craeft:ForkTransitionSchema is connected by craeft:hasHead to at least two
instances of (craeft:StepSchema union craeft:TransitionSchema)

● A fork virtual transition has exactly one tail and two or more heads, which can be a virtual step or
a virtual transition.

 An instance of craeft:ForkVirtualTransition is connected by craeft:hasTail only to
instances of (craeft:VirtualStep union craeft:VirtualTransition)

 An instance of craeft:ForkVirtualTransition is connected by craeft:hasTail to exactly
one instance of (craeft:VirtualStep union craeft:VirtualTransition)

 An instance of craeft:ForkVirtualTransition is connected by craeft:hasHead only to
instances of (craeft:VirtualStep union craeft:VirtualTransition)

 An instance of craeft:ForkVirtualTransition is connected by craeft:hasHead to at least
two instances of (craeft:VirtualStep union craeft:VirtualTransition)

● A fork transition has exactly one tail and two or more heads, which can be steps or transitions.

 An instance of craeft:ForkTransition is connected by craeft:hasTail only to instances of
(craeft:Step union craeft:Transition)

 An instance of craeft:ForkTransition is connected by craeft:hasTail to exactly one
instance of (craeft:Step union craeft:Transition)

D1.1 The deliverable name as in the GA

Craeft D1.1 56/105

 An instance of craeft:ForkTransition is connected by craeft:hasHead only to instances of
(craeft:Step union craeft:Transition)

 An instance of craeft:ForkTransition is connected by craeft:hasHead to at least two
instances of (craeft:Step union craeft:Transition)

2.5.2.5. Join transitions

Join transitions are similar to merge transitions, they have at least two tails and one head, except that
their tails do not represent alternatives but are supposed to be all present because they are parallel
courses of action that the join synchronises. Consequently, the same structure is replicated at all levels,
similarly to fork transitions. To represent join transitions, it is sufficient to properly localise properties
craeft:hasTail and craeft:hasHead.

● A join transition schema has two or more tails and one head, which can be step schemas or
transition schemas.

 An instance of craeft:JoinTransitionSchema is connected by craeft:hasTail only to instances
of (craeft:StepSchema union craeft:TransitionSchema)

 An instance of craeft:JoinTransitionSchema is connected by craeft:hasTail to at least two
instances of (craeft:StepSchema union craeft:TransitionSchema)

 An instance of craeft:JoinTransitionSchema is connected by craeft:hasHead only to instances
of (craeft:StepSchema union craeft:TransitionSchema)

 An instance of craeft:JoinTransitionSchema is connected by craeft:hasHead to exactly one
instance of (craeft:StepSchema union craeft:TransitionSchema)

● A join virtual transition has two or more tails and one head, which can be a virtual step or a virtual
transition.

 An instance of craeft:JoinVirtualTransition is connected by craeft:hasTail only to instances
of (craeft:VirtualStep union craeft:VirtualTransition)

 An instance of craeft:JoinVirtualTransition is connected by craeft:hasTail to at least two
instances of (craeft:VirtualStep union craeft:VirtualTransition)

 An instance of craeft:JoinVirtualTransition is connected by craeft:hasHead only to instances
of (craeft:VirtualStep union craeft:VirtualTransition)

 An instance of craeft:JoinVirtualTransition is connected by craeft:hasHead to exactly one
instance of (craeft:VirtualStep union craeft:VirtualTransition)

● A join transition has two or more tails and one head, which can be a step or a transition.

 An instance of craeft:JoinTransition is connected by craeft:hasTail only to instances of

D1.1 The deliverable name as in the GA

Craeft D1.1 57/105

(craeft:Step union craeft:Transition)

 An instance of craeft:JoinTransition is connected by craeft:hasTail to at least two instances of
(craeft:Step union craeft:Transition)

 An instance of craeft:JoinTransition is connected by craeft:hasHead only to instances of
(craeft:Step union craeft:Transition)

 An instance of craeft:JoinTransition is connected by craeft:hasHead to exactly one instance of
(craeft:Step union craeft:Transition)

2.6. Linking to standard dictionaries

To provide the widest interoperability of the KB built by the CRAEFT project, the CrO provides classes and
properties for linking to prominent semantic dictionaries. The considered dictionaries are de facto
standards in CH; they are the Getty Art & Architecture Thesaurus (AAT), the Catalog of Art Collections
(CONA), the Thesaurus of Geographic Names (TGN), and the Union List of Artist Names (ULAN).

In addition to widening the interoperability of the CRAEFT KB, linking to these dictionaries increases the
system's capacity for precise and comprehensive documentation and eases data entry, by avoiding
repeating the entry of information that already exists online.

The approach followed to link to these dictionaries is very simple. For every dictionary, the ontology
provides:

● a specific class, subclass of ecrm:E55_Type, including as instances the terms of the dictionary; the
class is named NNNTerm, where NNN is a (popular) name of the dictionary, e.g., AAT;

● a specific property, subproperty of ecrm:P2_has_type, for linking any individual to a term from
the dictionary. The property is named hasNNNTerm, where NNN is as above. The domain of this
property is the most specific CrO class that includes the individuals addressed by the dictionary,
while its range is the class NNNTerm.

As can be seen, the approach is quite general and can be easily applied to other similar resources. Each
dictionary is considered in the remaining subsections of this section. As these extraction of information
from the aforementioned vocabularies may be useful to others, we provide their source code that
implements it here: https://zenodo.org/records/10532597.

2.6.1.1. AAT

The AAT includes generic terms, and associated dates, relationships, and other information about
concepts related to or required to catalogue, discover, and retrieve information about art, architecture,
and other visual cultural heritage, including related disciplines dealing with visual works, such as
archaeology and conservation, where the works are of the type collected by art museums and repositories
for visual cultural heritage, or that are architecture.

The inclusion of Getty AAT was to enhance the system's vocabulary related to art, architecture, and
material culture. The AAT dictionary is the basic dictionary used by the CRAEFT Authoring Platform,

https://zenodo.org/records/10532597

D1.1 The deliverable name as in the GA

Craeft D1.1 58/105

illustrated below. The class including the Getty terms is GettyTerm. The property for linking to the AAT is
hasGettyTerm. Every knowledge entity in the system has an annotation from AAT, thus the domain of
hasGettyTerm is left unspecified for generality.

 GettyTerm is a class

 GettyTerm is a subclass of ecrm:E55_Type

 hasGettyTerm is an object property

 hasGettyTerm is a subproperty of ecrm:P2_has_type

 The range of hasGettyTerm is class GettyTerm

The specification of the Getty term is ensured and automated by adding the pertinent annotation by
default to each instantiated knowledge entity, at the data input form. Naturally, this default semantic
annotation is generic and it is left to the user to specialise it, if needed and if known. The default
annotations are provided in the table below. We recall that in the craft ontology, all digital assets are
media objects, while they may differ in type (image, video, 3D).

Media object
(image)

http://semantics.gr/authorities/digital-item-types/1332557240 - Born-digital
photograph

Media object
(video)

http://semantics.gr/authorities/digital-item-types/346883033 - Born-digital
video

Media object
(3D model)

http://vocab.getty.edu/aat/300411661 - virtual models

Person http://vocab.getty.edu/aat/300024979 - people (agents)

Social groups http://vocab.getty.edu/aat/300025948 - organizations (groups)

Location http://vocab.getty.edu/aat/300248479 - location (physical position)

Tool http://vocab.getty.edu/aat/300122241 - tools

Product http://vocab.getty.edu/aat/300387427 - products

Event
http://vocab.getty.edu/aat/300069084 - events (activities) (Events (hierarchy
name))

Process http://vocab.getty.edu/aat/300138076 - processes

http://semantics.gr/authorities/digital-item-types/1332557240
http://semantics.gr/authorities/digital-item-types/346883033
http://vocab.getty.edu/aat/300411661
http://vocab.getty.edu/aat/300024979
http://vocab.getty.edu/aat/300025948
http://vocab.getty.edu/aat/300248479
http://vocab.getty.edu/aat/300122241
http://vocab.getty.edu/aat/300387427
http://vocab.getty.edu/aat/300069084
http://vocab.getty.edu/aat/300138076

D1.1 The deliverable name as in the GA

Craeft D1.1 59/105

When the user documents any of these entities the appropriate annotation is by default entered. The user
may specialise these annotations according to the available knowledge about the knowledge entity. The
example below demonstrates such a specialisation, for a handcrafted musical instrument (a lute).

Figure 14. The page for a craft product with semantic annotations.

In the example above, the following semantic annotations have been added by the user to the default
one.

http://vocab.getty.edu/page/aat/300042101 - lutes (chordophones)

http://semantics.gr/authorities/general-terms-ekt/3929 - λαούτο

http://semantics.gr/authorities/general-terms-ekt/3929 - lute

Specifically, the term “lutes (chordophones)” specialises in the product type. In addition, the dictionary of
the Greek National Aggregator has been used, so that the digital assets can be ingested in Europeana. This
last semantic annotation has been added in both the Greek and the English languages.

It ought to be noted that although the AAT dictionary is more often used to document tangible heritage,
we found it very useful for the documentation of intangible heritage as well. Verbs are equally well
represented in the AAT and their hierarchical structure is quite useful in the semantic characterisation of
actions and processes. We provide two examples below.

http://vocab.getty.edu/page/aat/300042101
http://semantics.gr/authorities/general-terms-ekt/3929
http://semantics.gr/authorities/general-terms-ekt/3929

D1.1 The deliverable name as in the GA

Craeft D1.1 60/105

Figure 15. Two pages for craft process steps, with semantic annotations.

The examples show two process steps, one from glasswork and one from textile manufacturing. The first
example regards the cleaning of a blowpipe, which is annotated as

http://vocab.getty.edu/aat/300219637 - dry cleaning

since the cleaning takes place by scrubbing the blowpipe, without the use of water or any other cleaning
substance. The second example regards the collection of plants for dyeing threads with natural
ingredients and is annotated with two terms:

http://vocab.getty.edu/page/aat/300077121 - collecting

http://vocab.getty.edu/page/aat/300417516 - harvesting

to indicate the collection process by the human agent, as well as the fact that the collected items are plant
“products” that grew over the year (the corresponding process schema indicates the appropriate time of
the year for this harvesting).

http://vocab.getty.edu/aat/300219637
http://vocab.getty.edu/page/aat/300077121
http://vocab.getty.edu/page/aat/300417516

D1.1 The deliverable name as in the GA

Craeft D1.1 61/105

Although we initially added the AAT annotations to be able to expose our digital assets for ingestion to
Europeana, we noticed an added value advantage. The thesaurus structure of the AAT dictionary enables
the discovery of very specific terms that may not necessarily be known to the user. The addition of the
AAT annotations enables, thus, users to access a broader range of standardised terminology for
documenting the represented knowledge.

2.6.1.2. CONA

The incorporation of CONA extends the system's capability to include detailed information on art
collections, helping users connect and explore diverse art collections worldwide.

CONA compiles titles, attributions, depicted subjects, and other metadata about works of art,
architecture, and cultural heritage, both extant and historical, physical and conceptual. Metadata is
gathered and linked from museum collections, special collections, archives, libraries, scholarly research,
and other sources.

CONA is focused on “unique” artworks, or better, artworks with individual names each that have been
catalogued by museums, libraries, or regional authorities (i.e. for monuments, buildings, etc). For this
reason, the domain of the property is class ecrm:E22_Human-Made_Object.

 CONATerm is a class

 CONATerm is a subclass of ecrm:E55_Type

 hasCONATerm is an object property

 hasCONATerm is a subproperty of ecrm:P2_has_type

 The domain of hasCONATerm is class ecrm:E22_Human-Made_Object

 The range of hasCONATerm is class CONATerm

CONA would seem rather irrelevant for craft artefacts. The reason is that although each craft item is
unique, it rarely has a specific name, as opposed to a painting or statue. However, we found it very useful
and we are using it for the following two cases. First, when a crafted artefact references another known
artefact. Second, when a crafted artefact references a known event. We provide an example below,
coming from a collection of handcrafted garments whose design was inspired by antiquities.

The example regards two items that were inspired by the same archaeological finding, that is the “Small
snake goddess figurine”, http://vocab.getty.edu/page/cona/700000112.

http://vocab.getty.edu/page/cona/700000112

D1.1 The deliverable name as in the GA

Craeft D1.1 62/105

Figure 16. Two pages for two craft artefacts inspired by another artefact that is registered in CONA.

The CONA dictionary provides information on the particular archaeological artefact, thus relieving the
user from documenting that as well.

2.6.1.3. TGN and Geonames

Integration of the TGN and Geonames dictionaries provides geospatial context, enriching the
documentation system with standardised geographic names for locations relevant to cultural heritage.
Thus the domain of both properties hasTGNTerm and hasGeonamesTerm is class ecrm:E53_Place.

 TGNTerm is a class

 TGNTerm is a subclass of ecrm:E55_Type

D1.1 The deliverable name as in the GA

Craeft D1.1 63/105

 hasTGNTerm is an object property

 hasTGNTerm is a subproperty of ecrm:P2_has_type

 The domain of hasTGNTerm is class ecrm:E53_Place

 The range of hasTGNTerm is class TGNTerm

 GeonamesTerm is a class

 GeonamesTerm is a subclass of ecrm:E55_Type

 hasGeonamesTerm is an object property

 hasGeonamesTerm is a subproperty of ecrm:P2_has_type

 The domain of hasGeonamesTerm is class ecrm:E53_Place

 The range of hasGeonamesTerm is class GeonamesTerm

The Geonames dictionary is more comprehensive and detailed than TGN. We have been using it since
early versions of the Mingei Online Platform, in the Mingei project. In this version, we have automated
the extraction of location coordinates (GPS) from the Geonames service, relieving the user from the task
of entering this data, while at the same time, protecting system integrity from human errors.

Although we retrieved location coordinates from the Geonames dictionary, we added the TGN dictionary
as well. The reason is that TGN offers descriptions of the locations that provide historical information.

The example below shows the entry for a city (Athens). As the city is referenced in both dictionaries, both
of the annotations are included:

https://sws.geonames.org/264371/ - Athens

http://vocab.getty.edu/tgn/7001393 - Athens

However, in the case of less known locations, the Geonames directory is much more comprehensive and
includes many more locations.

https://sws.geonames.org/264371/
http://vocab.getty.edu/tgn/7001393

D1.1 The deliverable name as in the GA

Craeft D1.1 64/105

Figure 17. A page for a location knowledge entity, geosemantically annotated with Geonames and TGN labels.

2.6.1.4. ULAN

Linking to ULAN facilitates the identification and documentation of artists associated with cultural
artefacts, ensuring a comprehensive understanding of the individuals behind the creations.

The integration with ULAN serves two purposes. The first is the comprehensive documentation of the
represented knowledge pertinent to artisan names, used either in the documentation of artefacts or in
the representation of narratives. The second is the automation of the completion of biographical
information about the referenced persons. Specifically, we automated the retrieval of the following
attributes from the ULAB service.

● Birth / Death dates.
● Alternative names
● Nationality
● Role(s)

 ULANTerm is a class

 ULANTerm is a subclass of ecrm:E55_Type

 hasULANTerm is an object property

 hasULANTerm is a subproperty of ecrm:P2_has_type

 The domain of hasULANTerm is class ecrm:E21_Person

 The range of hasULANTerm is class ULANTerm

D1.1 The deliverable name as in the GA

Craeft D1.1 65/105

The example below regards a wood carving artist who created wooden sculptures for ecclesiastical altars,
named Francisco Salzillo.

Figure 18. The page for a wood sculptor (person), semantically annotated with a ULAN label.

Using the ULAN entry for this person,

http://vocab.getty.edu/ulan/500035899 - Salzillo y Alcaraz, Francisco

The aforementioned biographical information has been retrieved and has been entered into the system.
We notice that several alternative names have been retrieved. Moreover, the AAT dictionary has been
used to characterise the type of art produced by this person as follows:

http://vocab.getty.edu/aat/300025181 - sculptors

http://vocab.getty.edu/aat/300025368 - woodworkers

http://vocab.getty.edu/aat/300025382 - woodcarvers (woodworkers)

http://vocab.getty.edu/aat/300435120 - altarpiece sculptors

2.6.1.5. Additional dictionaries

Support is also provided for two more dictionaries, namely the UNESCO thesaurus and the dictionary of
the Greek National Aggregator. No automatic retrieval of information is foreseen for these dictionaries,
as the dictionaries mentioned earlier cover our semantic annotation needs. However, the UNESCO

http://vocab.getty.edu/ulan/500035899
http://vocab.getty.edu/aat/300025181
http://vocab.getty.edu/aat/300025368
http://vocab.getty.edu/aat/300025382
http://vocab.getty.edu/aat/300435120

D1.1 The deliverable name as in the GA

Craeft D1.1 66/105

dictionary is required for ingestion by all National Aggregators and the SearchCulture.gr dictionary is
required by the Greek Aggregator.

 UnescoThesaurusTerm is a class

 UnescoThesaurusTerm is a subclass of ecrm:E55_Type

 hasUnescoThesaurusTerm is an object property

 hasUnescoThesaurusTerm is a subproperty of ecrm:P2_has_type

 The range of hasUnescoThesaurusTerm is class UnescoThesaurusTerm

 UnescoThesaurusTerm is a class

 GNATerm is a subclass of ecrm:E55_Type

 hasGNATerm is an object property

 hasGNATerm is a subproperty of ecrm:P2_has_type

 The range of hasGNATerm is class GNATerm

In Craeft, we plan to submit all of the digital assets collected through the Greek National Aggregator, as it
participated in the Europeana project “CRAFTED”10 and welcomes digital assets pertinent to crafts,
regardless of their national provenance. For this reason, the Greek National Aggregator provides also the
“craft-item-types”11 sub-vocabulary which we also utilise. It ought to be noted, that when using national,
non-English, vocabularies we use the annotation twice with the same URL: once for the national label and
once for the English label. The example below demonstrates this case.

10 https://pro.europeana.eu/project/crafted

11 http://semantics.gr/authorities/vocabularies/craft-item-types

https://pro.europeana.eu/project/crafted
http://semantics.gr/authorities/vocabularies/craft-item-types

D1.1 The deliverable name as in the GA

Craeft D1.1 67/105

Figure 19. The page for a craft artefact, annotated with English and Greek metadata.

In the example, a semantic annotation is noted twice, that is

http://semantics.gr/authorities/ekt-unesco/1924280812 - Κεραμική τέχνη

and

http://semantics.gr/authorities/ekt-unesco/1924280812 - Ceramic art

comes from a national vocabulary that provides associations with the UNESCO vocabulary. Each label is
associated with the corresponding language tag.

Finally, we note that the system is open to any vocabulary the user wishes to include. For example, The
Library of Congress vocabulary can be used, if the aforementioned libraries do not suffice. The example
below demonstrates such a case.

http://semantics.gr/authorities/ekt-unesco/1924280812
http://semantics.gr/authorities/ekt-unesco/1924280812

D1.1 The deliverable name as in the GA

Craeft D1.1 68/105

Figure 20. The page for a craft tool, with semantic annotations including annotations from the Library of Congress.

In the example, the term the vocabulary item

http://id.loc.gov/authorities/subjects/sh2008000736 - Mastic industry

is used to enrich the contextualisation of the shown tool, as the specific term is not found in the
aforementioned vocabularies.

When exporting assets for ingestion to Europeana the annotations of the additional dictionaries are also
included.

2.6.1.6. Implementation

The implementation utilises the APIs provided by Getty to establish seamless connections with AAT,
CONA, TGN, and ULAN. We considered two approaches to the implementation of data retrieval
mechanisms to fetch and update information from these dictionaries.

The offline scenario. In this usage scenario, the user copies the URL of the dictionary term to the system.
A system process (a script) is run periodically in the background that retrieves the data from the dictionary
and completes it offline.

The online scenario. In this usage scenario, we considered either a priori loading of the dictionaries or
dynamically loading the parts of the dictionaries, in an autocomplete fashion.

We have technically reviewed prototypes of both implementation scenarios and selected the offline
scenario. The reason is that in the online scenario, the following disadvantages are encountered.

http://id.loc.gov/authorities/subjects/sh2008000736

D1.1 The deliverable name as in the GA

Craeft D1.1 69/105

● Copying the entire dictionary locally costs storage space and since this is an online system,
energy and maintenance costs. Additionally, as these dictionaries are updated, we would have
to perform this copy periodically.

● Retrieving parts of the dictionary dynamically, either in an autocomplete function or in creating
appropriate UI items (e.g. popup menus) is dependent on the speed of the network connection.
We found that the wait for this retrieval during data entry could be more friendly for the user.

The user interface implementation is shown in the figure below.

Figure 21. The GUI facility for default semantic annotations.

The example shows the default semantic annotations provided by the system, for the case of a person.
The modification of the user interface accommodates the new data fields and presents information from
the integrated dictionaries in a user-friendly manner.

2.7. Examples

To the end of illustrating the ontology, this Section introduces the axioms to represent a few example
actions and processes. These examples will also serve as a preliminary proof of concept in simple real
cases, before implementation and systematic evaluation of the representative craft instances.

The first example given concerns the single action of inserting a chisel into a piece of wood by hammering
it down. The schema of the action will first be given, followed by an instantiation and an enactment of the
action. For completeness, all the OWL 2 DL axioms are given, using the functional notation.

The subsequent examples concern four example processes:

● Creating a pattern of 20 dots in a straight line on a piece of silver
● Hammering a piece of wood until it is split into two (or more) pieces
● Bending a ply of aluminium
● Pulling apart a ply of steel

For the sake of readability, these examples will be illustrated only graphically or using natural language.

D1.1 The deliverable name as in the GA

Craeft D1.1 70/105

2.7.1. Inserting a chisel in a piece of wood

We first introduce the classes that represent the entities in the example.

 Hammer is a class

 Hammer is a subclass of ecrm:E22_Human-Made_Object

 Chisel is a class

 Chisel is a subclass of ecrm:E22_Human-Made_Object

 PieceOfWood is a class

 PieceOfWood is a subclass of ecrm:E22_Human-Made_Object

 Force is a class

 Force is a subclass of ecrm:E77_Persistent_Item

Graphically:

Figure 22 Classes and properties for an example.

Let us now define the action schema (named ActSch7) of the example at hand.

ClassAssertion(ActSch7 ActionSchema)

D1.1 The deliverable name as in the GA

Craeft D1.1 71/105

The following axioms give the characterisation of as in terms of some description properties:

ObjectPropertyAssertion(ActSch7 rdfs:hasLabel “Hitting a chisel with a hammer
entering into a piece of wood”)

ObjectPropertyAssertion(ActSch7 hasActionFunction
http://vocab.getty.edu/page/aat/300053017)

ObjectPropertyAssertion(ActSch7 hasActionType add)

ObjectPropertyAssertion(ActSch7 hasMachineType wedgeMachineType)

ObjectPropertyAssertion(ActSch7 rdfs:comment “The action is performed by a single
agent that exercises a force on the chisel by hitting it with a hammer upon its end.
As a result, the chisel is inserted into the piece of wood. The action belongs to
carpentry.”)

The only causing entity of the action is the force applied; the affected entities are the hammer, which is
rigid and whose position changes during the execution of the action, the chisel and the piece of wood; the
last two objects are deformable and become part of the newly created entity of the action, which is the
composite object consisting of the piece of wood with the chisel inserted in it.

All the above properties have VirtualAction as domain since they characterise instances of the ActSch7
schema. The range of these properties varies depending on the semantics of the property.

ObjectPropertyDomain(hasForce VirtualAction)

ObjectPropertyRange(hasForce Force)

ObjectPropertyDomain(hasHammer VirtualAction)

ObjectPropertyRange(hasHammer Hammer)

ObjectPropertyDomain(hasChisel VirtualAction)

ObjectPropertyRange(hasChisel chisel)

ObjectPropertyDomain(hasPieceOfWood VirtualAction)

ObjectPropertyRange(hasPieceOfWood PieceOfWood)

Now let us introduce a virtual action (VirtAct32) that instantiates this schema.

ClassAssertion(VirtAct32 VirtualAction)

ObjectPropertyAssertion(VirtAct32 instanceOf ActSch7)

ObjectPropertyAssertion(ActSch7 hasCausingEntityProperty hasForce)

ObjectPropertyAssertion(ActSch7 hasAffectedEntityProperty hasHammer)

ObjectPropertyAssertion(ActSch7 hasAffectedEntityProperty hasChisel)
ObjectPropertyAssertion(ActSch7 hasAffectedEntityProperty hasPieceOfWood)

D1.1 The deliverable name as in the GA

Craeft D1.1 72/105

To represent the action, we use the properties introduced by the action schema. For the sake of
readability, in the following axioms the name of each individual is formed by appending a (non-significant)
number to the name of the class where the individual belongs.

ObjectPropertyAssertion(VirtAct32 hasForce Force27)

ClassAssertion(Force27 Force)

ObjectPropertyAssertion(VirtAct32 hasHammer Hammer125)

ClassAssertion(Hammer125 Hammer)

ClassAssertion(Hammer125 RigidObject)

ObjectPropertyAssertion(VirtAct32 hasChisel Chisel99)

ClassAssertion(Chisel99 Chisel)

ClassAssertion(Chisel99 DeformableObject)

ObjectPropertyAssertion(VirtAct32 hasPieceOfWood PieceOfWood68)

ClassAssertion(PieceOfWood68 PieceOfWood)

ClassAssertion(PieceOfWood68 DeformableObject)

Let us now provide knowledge about the entities just introduced. Force is described by a sequence of
poses giving the motion of the hammer. These poses and their relative timestamps are given in a single
document, a web resource identified by IRI ForceDoc1. As explained in Section 2, the connection between
the force and its value document is represented as follows:

ClassAssertion(ForceDoc1 ecrm:E31_Document)

ObjectPropertyAssertion(ForceDoc1 ecrm:P70_Documents Force27)

The time-independent characteristics of the hammer, are shape and material properties, while those of
the chisel and the piece of wood are just the material properties, as these objects are deformable. This
knowledge is represented as described in Section 2.5, using the two properties hasShape and
hasMaterialProperties to associate each object to its characteristics, represented as documents.

ClassAssertion(Ham125Sh ecrm:E31_Document)

ObjectPropertyAssertion(Hammer125 hasShape Ham125Sh)

ClassAssertion(Ham125MP ecrm:E31_Document)

ObjectPropertyAssertion(Hammer125 hasMaterialProperties Ham125MP)

ClassAssertion(Ch99MP ecrm:E31_Document)

D1.1 The deliverable name as in the GA

Craeft D1.1 73/105

ObjectPropertyAssertion(Chisel99 hasMaterialProperties Ch99MP)

ClassAssertion(PoW68MP ecrm:E31_Document)

ObjectPropertyAssertion(PieceOfWood68 hasMaterialProperties PoW68MP)

The hammer, the chisel and the piece of wood are the three affected objects of the virtual action,
therefore the virtual action must be associated with the state of each of these objects before and after its
execution. The difference is that the state of the hammer does not include shape, while those of the chisel
and the piece of wood do. In all cases, the state is a document.

ClassAssertion(Ham125State1 ecrm:E31_Document)

ObjectPropertyAssertion(Hammer125 hasState Ham125State1)

ClassAssertion(Ham125State2 ecrm:E31_Document)

ObjectPropertyAssertion(Hammer125 hasState Ham125State2)

ObjectPropertyAssertion(VirtAct32 AESBefore Ham125State1)

ObjectPropertyAssertion(VirtAct32 AESAfter Ham125State1)

ClassAssertion(Chisel99State1 ecrm:E31_Document)

ObjectPropertyAssertion(Chisel99 hasState Chisel99State1)

ClassAssertion(Chisel99State2 ecrm:E31_Document)

ObjectPropertyAssertion(Chisel99 hasState Chisel99State2)

ObjectPropertyAssertion(VirtAct32 AESBefore Chisel99State1)

ObjectPropertyAssertion(VirtAct32 AESAfter Chisel99State2)

ClassAssertion(PoW68State1 ecrm:E31_Document)

ObjectPropertyAssertion(PieceOfWood68 hasState PoW68State1)

ClassAssertion(PoW68State2 ecrm:E31_Document)

ObjectPropertyAssertion(PieceOfWood68 hasState PoW68State2)

ObjectPropertyAssertion(VirtAct32 AESBefore PoW68State1)

ObjectPropertyAssertion(VirtAct32 AESAfter PoW68State2)

In order to complete the representation of the virtual action, we need to assert the object it produces,
and the composition of that object.

ClassAssertion(Ch99PoW68 CompositeObject)

D1.1 The deliverable name as in the GA

Craeft D1.1 74/105

ObjectPropertyAssertion(VirtAct32 produces Ch99PoW68)

ObjectPropertyAssertion(Ch99PoW68 ecrm:P46_is_composed_of Chisel99)

ObjectPropertyAssertion(Ch99PoW68 ecrm:P46_is_composed_of PieceOfWood68)

Finally, let us represent a real action (Action5) that is an enactment of the virtual action represented so
far. We assume that the enactment was performed by agent Tom, in Rome (which is just an abbreviation
for Rome’s Geonames IRI: https://www.geonames.org/3169070/) on the first of January 2022.

ClassAssertion(Action5 Action)

ObjectPropertyAssertion(Action5 enactmentOf VirtAct32)

ObjectPropertyAssertion(Action5 ecrm:P14_carried_out_by Tom)

ObjectPropertyAssertion(Action5 ecrm:P7_took_place_at Rome)

ObjectPropertyAssertion(Action5 ecrm:P4_has_time_span ts7)

DataPropertyAssertion(ts7 beginsAt “2021-01-01T00:00:00”@xsd:dateTime)

DataPropertyAssertion(ts7 endsAt “2021-01-01T23:59:59”@xsd:dateTime)

2.7.2. Creating a pattern of dots on silver

In this process, an agent uses a hand-driven rod with a hemispherical endpoint to compress silver and
create a pattern of 20 dots in a straight line. The dots should be 1.5 cm apart and each one should make
a small cusp of 3 mm depth in the material. The material is a 20 x 5 x 100 mm3 piece of silver.

The initial pose of the tool is 2 cm above the material and 1 cm from the middle of its top edge and
perpendicular to it. These dimensions are known not to cause any damage or failure to the material, such
as breaking or cracking. We are not interested in simulating tool wear, so, we model the tool to be rigid.
In contrast, the piece of silver on which the dots are made is considered to be deformable.

The process schema is given graphically in Figure 23. A process schema for creating a pattern of dots on
silver.

Figure 23 A process schema for creating a pattern of dots on silver.

D1.1 The deliverable name as in the GA

Craeft D1.1 75/105

The process schema is straightforward as it only includes simple transitions. As the ontology does not
provide a “loop” transition, the process schema enumerates all the action schemas that compose the
process, that is, the “Poke the material” and the “Retract the tool” action schemas have to be repeated
20 times and the “Retract the tool” action schema 19 times. To make the process schema easier to read,
in the above Figure we have used the “repeat …” abbreviation, but this is just a graphic device.

Upon instantiation of the process schema into a virtual process, two actions need to be executed
immediately after the start action: (1) Read the input simulation file and (2) initialise the virtual scene.
These actions are specific to the simulator and will never be enacted in real processes, therefore they are
not represented in the process schema by corresponding action schemas; rather, they are associated with
an action schema (the start action schema, in this case) via a special ad-hoc property. Similarly, upon
completion of every step, the resultant state of the affected objects and of the created objects must be
transferred from the simulator into the KB. This action is not going to be enacted therefore it is not
represented in the process schema by a corresponding action schema; rather, it is associated with every
action schema other than start and end via the above-mentioned ad-hoc property.

The images in the figure below illustrate the evolution of the simulation and the rendered result of the
simulation. Colour encodes material stress.

Figure 24 Top (left to right): beginning of first step; end of first step; beginning of second step; end of second step; end of
process. Bottom: rendering of the simulation result.

Action Schema “Poke the material”

English name for the action type: “make a 3 mm dot in a piece of silver”

Description of the action type: “The action is performed by a single agent that exercises a force on a hand-
driven rod with a hemispherical endpoint to compress silver and create a dot. The dot should make a small
cusp of 3 mm depth in the material”.

Function of the action type according to the standardised vocabulary

http://vocab.getty.edu/page/aat/300053826 embossing (technique)

Type: Transform

Machine Type: wedge

http://vocab.getty.edu/page/aat/300053826

D1.1 The deliverable name as in the GA

Craeft D1.1 76/105

Performer: person

Causing entity: the force exerted by the performer on the rod

Affected objects: 2, the rod (rigid) and the piece of silver (deformable)

The rigid rod is represented as follows:

● Type: hand-driven rod with a hemispherical endpoint
● Documentation of the unchanging properties: shape and material properties
● Documentation of the state of the entity before the action: pose
● Documentation of the state of the entity after the action: pose

The deformable piece of silver is represented as follows:

● Type: a piece of silver
● Documentation of the unchanging properties material properties
● Documentation of the state of the entity before the action: pose, shape
● Documentation of the state of the entity after the action: pose, shape

Created objects: none

Action function:

● Description the agent drives the tool perpendicularly towards the surface and presses displacing
the tool, by 3 mm in the material. The displacement is 23 mm in the vertical direction downwards.

● Duration 1 sec.

Action Schema “Retract the tool”

English name for the action type: “retract the rod after poking”

Description of the action type: “The action is performed by a single agent that exercises a force on a hand-
driven rod with a hemispherical endpoint to move it vertically from its current position.”

Function of the action type according to the standardised vocabulary

http://vocab.getty.edu/page/aat/300257582 pulling (dismantling)

Type: Transform

Machine Type: N/A

Performer: person

Causing entity: the force exerted by the performer on the rod

http://vocab.getty.edu/page/aat/300257582

D1.1 The deliverable name as in the GA

Craeft D1.1 77/105

Affected objects: the rod

The rod is represented as above.

Created objects: none

Action function:

● Description retract the tool perpendicularly and bring it to its initial position. The displacement is
23 mm in the vertical direction upwards

● Duration 1 sec.

Action Schema “Move to new location”

English name for the action type: “move the rod 1.5 cm from the current position in a given direction”.

Description of the action type: “The action is performed by a single agent that exercises a force on a hand-
driven rod with a hemispherical endpoint to move it 1.5 cm away from the current position in the direction
determined by the line of dots being executed”.

Function of the action type according to the standardised vocabulary

http://vocab.getty.edu/page/aat/300263062 moving (operational attribute)

Type: Transform

Machine Type: N/A

Performer: person

Causing entity: the transportation exerted by the performer on the rod

Affected objects: the rod

The rod is represented as above.

Created objects: none

Action function:

● Description The agent brings the tool to its new position. The displacement is 1.5 cm in the
horizontal direction to the right.

● Duration 1 sec.

2.7.3. Hammering a piece of wood

http://vocab.getty.edu/page/aat/300263062

D1.1 The deliverable name as in the GA

Craeft D1.1 78/105

In this process, an agent hammers a piece of wood until it is split into two or more pieces.

The process schema is given in Figure 26:

Figure 26 Process schema for hammering a piece of wood.

The above schema includes a main action schema, which captures both cases, i.e., whether the action
breaks or does not break the piece of wood, following the principle that the schema of an uncertain action
must account for all potential outcomes of an action. There are two types of transitions, a decision,
needed to evaluate whether the process is over or not, and a merge, needed by those processes that
require more than one execution of the main action to achieve their goal of breaking the piece of wood.

When we instantiate the schema, we have to define simulation properties such as the dimensions of the
piece of wood and its material properties. Moreover, the shape of the tool plays an important role, as well
as the force that the practitioner can apply and the incidence angle of the tool with the material. These
parameters determine how many times the practitioner is required to strike the material to be cut into
two pieces. In the instantiation of this schema in the simulation illustrated in the figure below, three
strokes of the hammer were required.

D1.1 The deliverable name as in the GA

Craeft D1.1 79/105

Figure 27 Simulation results for hammering a piece of wood. Top (left to right): initial condition, first strike, and upward
retraction of the tool. Middle: second strike, retraction, and third strike. Bottom: rendered 3D model of the simulation result.

In the simulation, the result of friction can be observed: when the hammer is moving upwards the piece
of material is stuck with the tool moving upwards. Other details that provide realism to this simulation
can be observed such as the slight distortion of the material at the contact locations with its support, as
well as its elastic properties that make the material change its shape while moving upwards.

The schema of the main action is given below.

English name for the action type: “hammer a piece of wood to break it into two pieces”

Description of the action type: “The action is performed by a single agent that exercises a force on a
hammer to break a piece of wood in two or more pieces”.

Function of the action type according to the standardised vocabulary

http://vocab.getty.edu/aat/300054098 hammering

Type: Transform

Machine Type: wedge

Performer: person

Causing entity: the force exerted by the performer on the hammer

Affected objects: 2, the hammer (rigid) and the piece of wood (deformable)

The rigid hammer is represented as follows:

● Type: hand-driven hammer
● Documentation of the unchanging properties: shape and material properties
● Documentation of the state of the entity before the action: pose
● Documentation of the state of the entity after the action: pose

The deformable piece of wood is represented as follows:

● Type: piece of wood
● Documentation of the unchanging properties material properties
● Documentation of the state of the entity before the action: pose, shape
● Documentation of the state of the entity after the action: pose, shape

Created objects: each of the pieces of wood resulting from the action, if any

Action function:

http://vocab.getty.edu/aat/300054098

D1.1 The deliverable name as in the GA

Craeft D1.1 80/105

● Description the agent drives a strike of the hammer perpendicularly to the middle of the wood.
The force vector is [0 100 0]T, measured in Newtons (N).

● Duration 1 sec.

When this action schema is instantiated into a virtual action and simulated, one of two things may happen:

1. The piece of wood breaks, in which case the two or more pieces of wood resulting from the action
are associated with the action as created entities.

2. The piece of wood does not break, in which case nothing is associated with the action as created
entities.

For instance, assuming that the piece of wood breaks immediately, then the virtual process looks like:

Figure 28 A virtual process.

where:

● vs is a “start” virtual action
● vt1 is a simple virtual transition, an instance of the merge transition schema
● va1 is a virtual action instance of the above action schema, breaking the piece of wood
● vt2 is a simple virtual transition instance of the decision transition schema
● ve is an “end” virtual action

If instead, the piece of wood breaks the second time it is hammered, then the virtual process looks like
this:

Figure 29 A virtual process.

2.7.4. Bending a ply of aluminium

In this process, a ply of aluminium is bent by using a rigid cylindrical tool. Two additional rigid cylindrical
rods are used to stabilise the ply and create the space for the ply to be bent. The initial pose of the tool is
in contact with the ply and its middle.

The process schema is given in the figure below:

D1.1 The deliverable name as in the GA

Craeft D1.1 81/105

Figure 30 Process schema for bending a ply of aluminium.

The process schema is straightforward, it includes one action schema, which is moving the cylinder
down to bend the aluminium ply. When instantiated in a virtual action, executed by simulation, the
objects involved in the action evolved as shown in the figure below. The image below also shows the
exported 3D result regarding the material.

Figure 31 Top(left to right): beginning, middle and end of action. Bottom: rendered 3D model of the simulation result.

The schema of the only action is given below:

English name for the action type: “bend a ply of aluminium by 10 mm”

Description of the action type: “The action is performed by a single agent that exercises a force on a
cylindrical tool that distorts the ply”.

Function of the action type according to the standardised vocabulary

http://vocab.getty.edu/page/aat/300053101 bending

Type: Transform

Machine Type: lever (two levers are formed, one for each side).

http://vocab.getty.edu/page/aat/300053101

D1.1 The deliverable name as in the GA

Craeft D1.1 82/105

Performer: person

Causing entity: the force exerted by the performer on the tool

Affected objects: 4, the tool and the supporting bodies, all rigid, and the ply of aluminium (deformable)

The rigid tool is represented as follows:

● Type cylindrical tool
● Documentation of the unchanging properties shape (rigid) and material properties
● Documentation of the state of the entity before the action: pose
● Documentation of the state of the entity after the action: pose

Each of the rigid supporting, cylindrical bodies is represented as follows:

● Type supporting element
● Documentation of the unchanging properties shape (rigid) and material properties
● Documentation of the state of the entity before the action: pose
● Documentation of the state of the entity after the action: pose

The deformable ply of aluminium is represented as follows:

● Type ply of aluminium
● Documentation of the unchanging properties material properties
● Documentation of the state of the entity before the action: pose, shape
● Documentation of the state of the entity after the action: pose, shape

Created objects: none

Action function:

● Description the agent pushes the tool downwards displacing the tool, by 10 mm. This causes a
bending of the ply, whose middle part moves correspondingly by 10 mm in the same direction.

● Duration 1 sec.
● Execution object = Plastic(object).

2.7.5. Pulling a ply apart

In this process, a ply of steel is pulled from its two ends to split it into two parts.

The process schema is given in the figure below:

D1.1 The deliverable name as in the GA

Craeft D1.1 83/105

Figure 32 Process schema for pulling a ply apart.

The process schema is straightforward, it includes one action schema, that is pulling the ply apart by
10mm from each part. When instantiated in a virtual action, executed by simulation, the objects

involved in the action evolved as shown in the figure below (colour encodes material stress). The
image below also shows the exported 3D result regarding the material.

Figure 33 Top (left to right): beginning, middle and end of action. Bottom: rendered 3D model of the simulation result.

The schema of the only action is given below:

English name for the action type: “pull the ply by 10 mm from each end”.

Description of the action type: “The action is performed by a single agent that pulls the ply from its two
ends”.

Function of the action type according to the standardised vocabulary

http://vocab.getty.edu/page/aat/300257582 pulling (dismantling)

Type: Subtract

Machine Type: N/A

Performer: person

Causing entity: the forces exerted by the performer on the ply

Affected objects: 1, the ply (deformable)

http://vocab.getty.edu/page/aat/300257582

D1.1 The deliverable name as in the GA

Craeft D1.1 84/105

Created entities: 2 or more, the two pieces in which the ply has been split. Any minute chips of material
that may be created from the material damage are ignored.

The deformable ply is represented as follows:

● Type ply of steel
● Documentation of the unchanging properties material properties
● Documentation of the state of the entity before the action: pose, shape
● Documentation of the state of the entity after the action: N/A (ceased).

Created objects: 2 ply pieces

The created pieces are represented as follows:

● Type piece of steel ply
● Documentation of the unchanging properties material properties
● Documentation of the state of the entity before the action: pose, shape
● Documentation of the state of the entity after the action: pose, shape

Action function:

● Description the agent pulls the ply downwards displacing each end of the tool, by 10 mm. This
causes a breaking of the ply in two pieces.

● Duration 1 sec.

D1.1 The deliverable name as in the GA

Craeft D1.1 85/105

3. The CRAEFT Authoring Platform

The Craeft Authoring Platform (CAP) is a Web-based, online, multiple-user authoring platform for the
documentation of traditional crafts that is under development. It is functional and accessible online,
although it is not yet in its final form. The CAP is based on the Mingei Online Platform (MOP) developed
in the Mingei Innovation Action.

Authoritative reports on crafts and conservation [1, 2] identify tangible and intangible craft dimensions.
Tangible dimensions regard materials, tools, and workspaces. Intangible dimensions refer to know-how
and skill, but also collective memories, values, and traditions. We refer to contextual and crafting
intangible dimensions. Contextual dimensions refer to the social and historical context. Crafting
dimensions refer to the knowledge and judgement of the practitioner in handicraft activities.

We briefly review the MOP to provide context on the upgrades that are reported in the remainder of this
deliverable.

The MOP represents traditional craft instances based on two axes:

1. Craft processes. The representation is based on the identification and digital representation of
pertinent data, information, and knowledge that enable the understanding and reenactment of
traditional craft processes.

2. The social and historic context of craft instances. The representation is based on documented
narratives that support the presentation of social and historical context to diverse audiences.

The MOP is based on a systematic method for craft representation, the adoption, knowledge, and
representation standards of the cultural heritage (CH) domain, and the integration of outcomes from
advanced digitization techniques. More specifically, the MOP follows and implements the Mingei Craft
Representation Protocol [3]. A handbook accompanies the MOP elaborating on good practices for its use
[4].

The MOP has been documented in the following publications:

1. A Web-Based Platform for Traditional Craft Documentation. Multimodal Technologies and
Interaction. 2022; 6(5):37, Partarakis N, Doulgeraki V, Karuzaki E, Galanakis G, Zabulis X, Meghini
C, Bartalesi V, Metilli D. This publication presents the technical architecture and GUI of the MOP.

2. Representation of socio-historical context to support the authoring and presentation of
multimodal narratives: The Mingei Online Platform, (2021), N. Partarakis, P. Doulgeraki, E.
Karuzaki, I. Adami, S. Ntoa, D. Metilli, V. Bartalesi, C. Meghini, Y. Marketakis, M. Theodoridou, D.
Kaplanidi, X. Zabulis, ACM Journal on Computing and Cultural Heritage, DOI:10.1145/3465556.
This publication presents the way that contextualisation narratives are represented in the MOP.

3. Digitisation of traditional craft processes, X. Zabulis, C. Meghini, A. Dubois, P. Doulgeraki, N.
Partarakis, I. Adami, E. Karuzaki, A. Carre, N. Patsiouras, D. Kaplanidi, D. Metilli, V. Bartalesi, C.
Ringas, E. Tasiopoulou, Z. Stefanidi, ACM Journal on Computing and Cultural Heritage,
DOI:10.1145/3494675. This publication presents the way that traditional craft processes are
represented in the MOP.

D1.1 The deliverable name as in the GA

Craeft D1.1 86/105

4. The Mingei Handbook, X. Zabulis, N. Partarakis, A. Argyros, A. Tsoli, A. Qammaz, I. Adami, P.
Doulgeraki, E. Karuzaki, A. Chatziantoniou, N. Patsiouras, E. Stefanidi, Z. Stefanidi, A. Rigaki, M.
Doulgeraki, A. Patakos, S. Manitsaris, A. Glushkova, B. Olivas-Padilla, D. Menychtas, D.
Makrygiannis, C. Meghini, V. Bartalesi, D. Metilli, N. Magnenat-Thalmann, E. Bakas, N. Cadi, D.
van Dijk, P. de Sterke, M. Wippoo, M. van der Vaart, C. Ringas, M. Fasoula, E. Tasiopoulou, D.
Kaplanidi, L. Pannese, V. Nitti, C. Cuenca, A. Carre, A. Dubois, H. Hauser, C. Beisswenger, D. Blatt,
I. Neumann, U. Denter. DOI:10.5281/zenodo.6580124. This handbook is a guide to good practices
for representing crafts in the MOP.

As the CAP is based on the MOP, we henceforth refer to it as MOP/CAP. Moreover, because the MOP has
already users and a “brand name” while its URL is mentioned in the literature, we have retained the same
WWW address for the platform, which is http://mop.mingei-project.eu.

3.1. Representation of knowledge in the MOP/CAP

In MOP, knowledge is represented using the conceptualisation provided by an ontology, the Mingei Crafts
Ontology (CrO) [5]. The ontology provides a vocabulary and axioms to align the vocabulary terms with the
conceptualization. The ontology harmonizes in a coherent vision multiple sub-domain ontologies, re-using
solid results in knowledge representation that have now become standards, such as (a) ‘Narrative’
modelling, based on an extension of the CIDOC-CRM [6, 7] with narratological concepts; (b) time, based
on the OWL time ontology [8]; (c) content representation, based on RDF; and (d) 4D-fluents for the
representation of time-varying properties. Also, we have designed the required mappings between CrO
and Europeana Data Model (EDM). This will allow us to link particular instances of CrO with Europeana
resources, enabling, therefore, the validation as well as the enrichment of resources and the ingestion of
the latter in Europeana. Furthermore, the implementation of the ontology is based on standards: the Web
architecture for identifying, storing and retrieving the basic resources using Internationalized Resource
Identifiers (IRIs), whether media objects, formal concepts or individuals; RDF as the basic data model for
knowledge; OWL as ontology Web language; and SPARQL as a knowledge extraction language.

3.2. User Interface

A set of GUI components enables the instantiation of knowledge entities, facilitating the entry of attribute
data and the association with recordings that document them.

The formulation of basic data entries is systematised through an authoring environment that builds on
top of an Ontology that adheres to knowledge representation standards in Cultural Heritage [9] and
supports the representation of knowledge about ‘Persons’, ‘Social Groups, ‘Places’, ‘Objects’, and related
‘Media Objects’. This facilitates the data curators in transforming verbal and visual content into data
entries. Furthermore, in MOP, a user-friendly user interface for the data curators is offered for integrating
digitisation results produced by modern digital media and digital capturing technologies including Motion
Capture (MoCap) and 2D and 3D digitisation, thus enhancing their representation capacity.

The front end was implemented using the Research Space12 (RS) toolkit, which provides HTML5 semantic
components for structuring Web authoring forms, template pages, navigation menus, content panels, and

12 https://researchspace.org/

http://mop.mingei-project.eu/
https://researchspace.org/

D1.1 The deliverable name as in the GA

Craeft D1.1 87/105

other interaction and ‘Presentation’ elements (i.e., buttons, searches, drop-downs, table grids, etc.). It
also provides ‘Presentation’ features such as interactive maps, a timeline component for visualising
chronologically ordered events, and various image gallery components. The RS toolkit facilitated rapid
prototyping in the first design iteration. Targeted design prototypes were produced thereafter, to visualize
suggested design solutions and improvements stemming from the results of the design iterations.

UI templates: The ontology provides the semantics of the knowledge representation employed by the RS
toolkit. For example, a representation of a particular location can be associated with the ontology (model)
as being of type ‘Location’. In this context using the RS toolkit UI templates have been created to define
generic views that are being automatically applied to entire sets of instances. An example of a data entry
form for locations is shown in the figure below.

Figure 34. Data entry form for a basic knowledge element (Location).

Application pages: For the ‘Presentation’ of a collection of knowledge such as, for example, the
visualisation of a ‘Presentation’ of a ‘Narration’, application pages are used. These are pages that are not
associated with any entity in the knowledge graph. Using application pages functionality that goes beyond
associations with entities can be built. In application pages, the markup is bound with knowledge from
the ontology. For application pages, HTML5 semantic components are used. The components are custom

D1.1 The deliverable name as in the GA

Craeft D1.1 88/105

HTML5 components that operate on the result of SPARQL queries executed over the knowledge graph.
HTML5 components allow formatting and structuring the content of application pages and templates
providing functionality beyond that of native HTML mark-up.

A human-comprehensible way to present the represented knowledge network is hypertext. The
implementation employs a Web interface that dynamically generates Hypertext Markup Language (HTML)
pages from the knowledge queries and a Web server that transmits them to the Web client (browser). An
individual documentation page is provided for each entity. Semantic links are implemented as hyperlinks
that lead to the pages of cited entities. This way, browsing and exploration of knowledge through semantic
associations are enabled. Contents can be organised and presented spatiotemporally or thematically. A
keyword-based search is provided.

Documentation pages for media objects contain links to digital assets, textual presentation of metadata,
and previews of the associated digital assets. One or more URLs are provided on each page. For media
objects, these links point to the source data files. For knowledge entities, the link points to the RDF
encoding of that entity. For locations and events, specific UI modules are provided. For locations,
embedded, dynamic maps are provided through OpenStreetMap [10]. Timeline and calendar views are
available for events. The figure below, shown is an example of a data entry form for the presentation of a
narrative (left) and the presentation output as seen by the user (right).

D1.1 The deliverable name as in the GA

Craeft D1.1 89/105

Figure 35. Data entry form (left) and presentation (right) for a narrative.

Moreover, the elements stored in the knowledge base are semantically annotated using the Getty Arts
and Architecture Thesaurus. These annotations are presented as hyperlinks for the user to access their
definitions as well as find their place in the conceptual hierarchy. Two examples are provided in the figure
below.

D1.1 The deliverable name as in the GA

Craeft D1.1 90/105

Figure 36. Two examples of semantic annotations using controlled vocabularies, one for a craft product (left) and one for a
person (right).

3.3. Progress in Craeft

In Craeft we intend to extend MOP in two directions

1. Accommodate the extended ontology to be developed in Craeft to accommodate new concepts
pertinent to craft simulations. Accordingly, extend the GUI to accommodate the authoring and
presentation of the new concepts.

2. Given our experience of the platform usage, to improve the functionalities and technical facilities
of the MOP. This includes both facilities for the users, as well as technical improvements that
enhance the integrity of the platform. Moreover, these extensions include the adoption of
additional controlled vocabularies, as described below.

In addition, the MOP was extended to accommodate the new RCIs that are introduced in Craeft.

3.4. Multilingualism

Enhancements were made to the MOP/CAP system for traditional crafts, focusing on the implementation
of multilingual support. The effort aimed to improve user experience by allowing the entry of textual data
in multiple languages, thus accommodating the diverse linguistic backgrounds of users.

We consider the MOP/CAP as a valuable platform for preserving and sharing knowledge about traditional
artisanal practices. With this enhancement, we wish to overcome limitations in supporting multiple
languages that hindered its usability for a broader audience.

3.4.1. Objectives

The objectives of this task were the following:

D1.1 The deliverable name as in the GA

Craeft D1.1 91/105

● Multilingual Support: Enable users to enter textual data in multiple languages for all textual
fields and entities in the system.

● User-Friendly Interface: Implement an intuitive interface for data entry through online forms
with a convenient language selection mechanism.

3.4.2. Methodology

Our approach followed the two objectives separately.

3.4.2.1. Database schema

To accommodate multilingual support, modifications were made to the database schema. Each textual
field and entity now supports multiple instances, allowing users to input data in different languages. The
implementation of multilingual support involved a systematic approach to database modifications and
user interface enhancements. Users can now input textual data in various languages, with the ability to
add instances for each language.

3.4.2.2. User Interface

The data entry forms were updated to include a pop-up language selection menu alongside each textual
field. This enables users to specify the language of the entered textual data easily. A pop-up menu enables
users to select the language for each textual field, providing a clear and accessible language specification
mechanism.

The panel that presents the documentation for each knowledge entity has also been updated so that it
indicates the language in which each textual entry is written.

The images below illustrate these enhancements.

D1.1 The deliverable name as in the GA

Craeft D1.1 92/105

Figure 37. The authoring data entry form (top) and the viewing page (bottom) for a person, illustrate the multilingual
capabilities of the platform.

The first image (top) shows the pop-up menu. The second image (bottom) shows the view panel that
presents the documentation. As can be observed, each textual entry is preceded by an indicator that
specifies the language of the textual field’s content.

3.4.3. Implementation notes

The database schema has been modified to support an arbitrary number of instances so that any number
of languages can be supported. For now, the GUI and specifically the pop-up menu for the textual fields
has five entries, which correspond to the native languages of the RCIs studied in Craeft. These are French,
Spanish, Greek, and German, as well as English which is the default language. The reason we used only
these four languages was usability. In the context of the Craeft project, only these four languages are
used. As such, creating a pop-up menu with numerous language entries would hinder usability. In a future
step, we plan to associate user and craft instance profiles with languages, so that the pop-up menu for
language selection dynamically adapts to the user and the craft instance.

The only textual field for which our implementation slightly differs from what was already mentioned is
the name of knowledge entities, which remains in English. The reason is that this is the default language
of the system. Still, names can be entered in any language, using the alternative name field.

3.5. Cross-references

Updates were made to the MOP/CAP focusing on the improvement of knowledge entity relationships and
the implementation of a computer-aided garbage collection and error correction mechanism. The goal is
to enhance the user experience by providing comprehensive views of associations between knowledge
elements and facilitating the identification and correction of unreferenced entities in the database.

D1.1 The deliverable name as in the GA

Craeft D1.1 93/105

Our motivation was the following. As the MOP/CAP evolved, it became imperative to strengthen the
connections between knowledge entities. A computer-aided garbage collection mechanism was
introduced to identify and rectify unreferenced entities, often resulting from data entry errors.

In the following, we call cross-references of knowledge elements the database relations (pointers) that
point to this element from other knowledge elements.

3.5.1. Objectives

● Enhanced Entity Relationships: Enable users to easily navigate and view associations between
different knowledge elements within the system.

● Garbage Collection: Implement a mechanism to identify and manage unreferenced entities for
database cleanliness and accuracy.

● User-Friendly Correction: Introduce a new field in the data entry form to allow users to establish
associations between knowledge entities for improved data integrity.

3.5.2. Methodology

3.5.2.1. Database Relations

The cross-references between knowledge entities were revisited and are now shown when viewing the
knowledge elements. This enables users to navigate through associated elements. This enhancement
promotes a better understanding of the interconnections within the traditional crafts documentation
system. Users can now view all associated knowledge elements when viewing a specific entity, providing
a more comprehensive and interconnected understanding of traditional crafts data.

3.5.2.2. Garbage Collection

Queries were developed to identify unreferenced entities in the database. The results of these queries
are displayed on online Web pages, presenting hyperlinks to unreferenced elements along with a delete
button for corrective actions. Online Web pages showcase unreferenced entities, enabling users to either
delete these entities or follow links for correction.

3.5.2.3. Data Entry Forms

A new field, named "Associate with", was added to the data entry form of each knowledge entity. This
field incorporates a pop-up menu with autocomplete functionality, allowing users to establish
associations during the data entry process. The addition of the "Associate with" field in data entry forms
streamlines the process of establishing associations between knowledge entities, reducing errors and
improving data integrity.

3.5.2.4. Additional queries

Additional queries were formulated in the same spirit to increase the integrity of the knowledge base
contents. Specifically, several queries were formulated to ease the checking of missing inputs or other

D1.1 The deliverable name as in the GA

Craeft D1.1 94/105

user errors. As such the following queries were formulated and added to a Web page, along with an
additional query that presents analytics on the contents of the database.

1. 3D Models Source URLs
2. 3D Models WITHOUT Source URLs
3. 3D Models GLB Sources
4. 3D Models WITHOUT GLB Sources
5. 3D Models Thumbnail image source URLs
6. 3D Models WITHOUT Thumbnail image source URLs
7. 3D Models & Associated with objects
8. 3D Models WITHOUT Associated with objects
9. 3D Models WITHOUT Pilot
10. 3D Models with UNKNOWN Pilot
11. 3D Models WITHOUT Creator
12. 3D Models WITHOUT Creation Date
13. 3D Models WITHOUT Metrics
14. 3D Models WITHOUT Creative Commons licence

15. 3D Motions Source URLs
16. 3D Motions WITHOUT Source URLs
17. 3D Motions WITHOUT Pilot
18. 3D Motions with UNKNOWN Pilot
19. 3D Motions WITHOUT Creator
20. 3D Motions WITHOUT Creation Date
21. 3D Motions WITHOUT Creative Commons licence

22. Embedded Videos Source URLs
23. Embedded Videos WITHOUT source URLs
24. Embedded Videos WITHOUT Pilot
25. Embedded Videos WITHOUT Creator
26. Embedded Videos WITHOUT Creation Date
27. Embedded Videos with UNKNOWN Pilot

28. Events
29. Events WITHOUT Name
30. Events WITHOUT Description
31. Events WITHOUT Pilot
32. Events with UNKNOWN Pilot
33. Events WITHOUT Dates

34. Fabulae
35. Fabulae WITHOUT Description
36. Fabulae WITHOUT Events
37. Fabulae WITHOUT Associated with objects
38. Fabulae WITHOUT Pilot
39. Fabulae with UNKNOWN Pilot

40. Images Thumbnails
41. Images WITHOUT Source URLs
42. Images Source URLs WITHOUT Associated with objects

http://mop.mingei-project.eu/resource/:karam_test96
http://mop.mingei-project.eu/resource/:karam_test97
http://mop.mingei-project.eu/resource/:karam_test94
http://mop.mingei-project.eu/resource/:karam_test95
http://mop.mingei-project.eu/resource/:karam_test05
http://mop.mingei-project.eu/resource/:karam_test06
http://mop.mingei-project.eu/resource/:karam_test07
http://mop.mingei-project.eu/resource/:karam_test08
http://mop.mingei-project.eu/resource/:karam_test16
http://mop.mingei-project.eu/resource/:karam_test83
http://mop.mingei-project.eu/resource/:karam_test34
http://mop.mingei-project.eu/resource/:karam_test98
http://mop.mingei-project.eu/resource/:karam_test35
http://mop.mingei-project.eu/resource/:karam_test52
http://mop.mingei-project.eu/resource/:karam_test31
http://mop.mingei-project.eu/resource/:karam_test32
http://mop.mingei-project.eu/resource/:karam_test33
http://mop.mingei-project.eu/resource/:karam_test84
http://mop.mingei-project.eu/resource/:karam_test40
http://mop.mingei-project.eu/resource/:karam_test99
http://mop.mingei-project.eu/resource/:karam_test53
http://mop.mingei-project.eu/resource/:karam_test28
http://mop.mingei-project.eu/resource/:karam_test29
http://mop.mingei-project.eu/resource/:karam_test30
http://mop.mingei-project.eu/resource/:karam_test102
http://mop.mingei-project.eu/resource/:karam_test103
http://mop.mingei-project.eu/resource/:karam_test85
http://mop.mingei-project.eu/resource/:karam_test69
http://mop.mingei-project.eu/resource/:karam_test11
http://mop.mingei-project.eu/resource/:karam_test12
http://mop.mingei-project.eu/resource/:karam_test19
http://mop.mingei-project.eu/resource/:karam_test82
http://mop.mingei-project.eu/resource/:karam_test67
http://mop.mingei-project.eu/resource/:karam_test23
http://mop.mingei-project.eu/resource/:karam_test44
http://mop.mingei-project.eu/resource/:karam_test45
http://mop.mingei-project.eu/resource/:karam_test46
http://mop.mingei-project.eu/resource/:karam_test80
http://mop.mingei-project.eu/resource/:karam_test81
http://mop.mingei-project.eu/resource/:vdoulger_1
http://mop.mingei-project.eu/resource/:vdoulger_2
http://mop.mingei-project.eu/resource/:vdoulger_3

D1.1 The deliverable name as in the GA

Craeft D1.1 95/105

43. Images WITHOUT Pilot
44. Images with UNKNOWN Pilot
45. Images WITHOUT Creator
46. Images WITHOUT Creation Date
47. Images WITHOUT Metrics
48. Images WITHOUT Creative Commons licence

49. Locations
50. Locations WITHOUT Name
51. Locations WITHOUT Image
52. Locations WITHOUT Pilot
53. Locations with UNKNOWN Pilot
54. Locations WITHOUT Associated with event(s)

55. Materials
56. Materials WITHOUT Name
57. Materials Associated with objects
58. Materials WITHOUT Associated with objects
59. Materials WITHOUT Pilot
60. Materials with UNKNOWN Pilot

61. Narratives
62. Narratives WITHOUT Description
63. Narratives WITHOUT Fabula
64. Narratives WITHOUT Narration
65. Narratives WITHOUT Pilot
66. Narratives with UNKNOWN Pilot

67. Persons
68. Persons WITHOUT Name
69. Persons WITHOUT Image
70. Persons WITHOUT Pilot
71. Persons with UNKNOWN Pilot

72. Pilots

73. Process Schemas
74. Process Schemas WITHOUT Pilot
75. Process Schemas with UNKNOWN Pilot

76. Processes
77. Processes WITHOUT Description
78. Processes WITHOUT Pilot
79. Processes with UNKNOWN Pilot

80. Products
81. Products WITHOUT Name
82. Products WITHOUT Description
83. Products WITHOUT Pilot
84. Products with UNKNOWN Pilot
85. Products WITHOUT Material

http://mop.mingei-project.eu/resource/:karam_test17
http://mop.mingei-project.eu/resource/:karam_test79
http://mop.mingei-project.eu/resource/:karam_test36
http://mop.mingei-project.eu/resource/:karam_test101
http://mop.mingei-project.eu/resource/:karam_test37
http://mop.mingei-project.eu/resource/:karam_test50
http://mop.mingei-project.eu/resource/:karam_test60
http://mop.mingei-project.eu/resource/:karam_test61
http://mop.mingei-project.eu/resource/:karam_test63
http://mop.mingei-project.eu/resource/:karam_test62
http://mop.mingei-project.eu/resource/:karam_test78
http://mop.mingei-project.eu/resource/:karam_test64
http://mop.mingei-project.eu/resource/:karam_test70
http://mop.mingei-project.eu/resource/:karam_test43
http://mop.mingei-project.eu/resource/:vdoulger_4
http://mop.mingei-project.eu/resource/:vdoulger_5
http://mop.mingei-project.eu/resource/:karam_test15
http://mop.mingei-project.eu/resource/:karam_test86
http://mop.mingei-project.eu/resource/:karam_test24
http://mop.mingei-project.eu/resource/:karam_test47
http://mop.mingei-project.eu/resource/:karam_test48
http://mop.mingei-project.eu/resource/:karam_test49
http://mop.mingei-project.eu/resource/:karam_test77
http://mop.mingei-project.eu/resource/:karam_test76
http://mop.mingei-project.eu/resource/:karam_test54
http://mop.mingei-project.eu/resource/:karam_test55
http://mop.mingei-project.eu/resource/:karam_test56
http://mop.mingei-project.eu/resource/:karam_test57
http://mop.mingei-project.eu/resource/:karam_test75
http://mop.mingei-project.eu/resource/:karam_test73
http://mop.mingei-project.eu/resource/:karam_test21
http://mop.mingei-project.eu/resource/:karam_test87
http://mop.mingei-project.eu/resource/:karam_test88
http://mop.mingei-project.eu/resource/:karam_test22
http://mop.mingei-project.eu/resource/:karam_test68
http://mop.mingei-project.eu/resource/:karam_test89
http://mop.mingei-project.eu/resource/:karam_test90
http://mop.mingei-project.eu/resource/:karam_test71
http://mop.mingei-project.eu/resource/:karam_test13
http://mop.mingei-project.eu/resource/:karam_test14
http://mop.mingei-project.eu/resource/:karam_test20
http://mop.mingei-project.eu/resource/:karam_test91
http://mop.mingei-project.eu/resource/:karam_test42

D1.1 The deliverable name as in the GA

Craeft D1.1 96/105

86. Products WITHOUT Image

87. Social Groups
88. Social Groups WITHOUT Pilot
89. Social Groups with UNKNOWN Pilot

90. Tools
91. Tools WITHOUT Name
92. Tools WITHOUT Description
93. Tools WITHOUT Pilot
94. Tools with UNKNOWN Pilot
95. Tools WITHOUT Material
96. Tools WITHOUT Image

97. Videos Source URLs
98. Videos WITHOUT source URLs
99. Videos WITHOUT Pilot
100. Videos with UNKNOWN Pilot
101. Videos WITHOUT Creator
102. Videos WITHOUT Creation Date
103. Videos WITHOUT Metrics
104. Videos WITHOUT Creative Commons licence

105. Statistics

3.6. Zenodo storage

In collaboration and coordination with representatives of Europeana and Zenodo the digital assets
provided by Craeft are stored in the Zenodo repository, which is funded by the European Commission. As
such, only meta-data are stored in the local file system of the MOP/CAP. An example is shown in the figure
below.

Figure 40. A Web page at Europeana, with a collection of 10 marble sculptures.

http://mop.mingei-project.eu/resource/:karam_test66
http://mop.mingei-project.eu/resource/:karam_test58
http://mop.mingei-project.eu/resource/:karam_test59
http://mop.mingei-project.eu/resource/:karam_test92
http://mop.mingei-project.eu/resource/:karam_test72
http://mop.mingei-project.eu/resource/:karam_test09
http://mop.mingei-project.eu/resource/:karam_test10
http://mop.mingei-project.eu/resource/:karam_test18
http://mop.mingei-project.eu/resource/:karam_test93
http://mop.mingei-project.eu/resource/:karam_test41
http://mop.mingei-project.eu/resource/:karam_test65
http://mop.mingei-project.eu/resource/:karam_test25
http://mop.mingei-project.eu/resource/:karam_test26
http://mop.mingei-project.eu/resource/:karam_test27
http://mop.mingei-project.eu/resource/:karam_test74
http://mop.mingei-project.eu/resource/:karam_test38
http://mop.mingei-project.eu/resource/:karam_test100
http://mop.mingei-project.eu/resource/:karam_test39
http://mop.mingei-project.eu/resource/:karam_test51
http://mop.mingei-project.eu/resource/:karam_statistics

D1.1 The deliverable name as in the GA

Craeft D1.1 97/105

The example regards a collection of 10 marble craft artefacts which can be found on the following
Europeana page

https://www.europeana.eu/el/item/911/https___www_searchculture_gr_aggregator_edm_mingei_000
155_c3ec5fe2_e189_4a4e_88f0_79e3718a1dcd

The 3D assets, as well as their image previews, are all stored on the Zenodo repository.

3.6.1. Technical advantages

Storing assets on Zenodo is important because the online storage space for digital assets of large storage
capacity can be costly. It is therefore more important for small artisanal communities that may have
limited resources.

Moreover, storing digital assets on an online repository (Zenodo) instead of our Web server storage offers
several additional advantages.

● Zenodo is hosted as a cloud service, providing high availability and accessibility from anywhere
with an internet connection. This ensures that digital assets are readily available. Moreover,
Zenodo offers an API and, therefore, the stored content can be used directly by third-party
applications.

● Zenodo implements backup and redundancy measures, ensuring the integrity and availability of
digital assets. This helps protect against data loss due to hardware failures, disasters, or other
unforeseen events.

● Zenodo has invested in security measures, including encryption, access controls, and regular
security updates. This enhances the overall security of digital assets compared to managing our
server. Moreover, Zenodo performs its own server maintenance, updates, and security patches,
reducing the burden of keeping up with security updates.

● Zenodo provides DOIs for the submitted assets and also offers analytics of access, easing the
distribution of assets and enabling the tracking of their access respectively. Moreover, Zenodo
offers compliance certifications with the Creative Commons licences and adheres to industry-
specific regulations, ensuring that data storage practices align with legal requirements and
industry standards.

3.6.2. Ecological advantages

Using Zenodo and cloud storage services in general, instead of hosting digital assets on our Web server
offers ecological benefits.

An advantage is the increased energy efficiency achieved by large-scale cloud providers through
economies of scale and investments in optimised data centres. These providers often utilise advanced
technologies and practices to reduce overall energy consumption, making their infrastructure more
environmentally friendly compared to smaller, less efficient server setups.

Cloud services also promote better resource utilisation by consolidating data and applications on shared
infrastructure. This can lead to more efficient use of hardware resources, resulting in lower energy

https://www.europeana.eu/el/item/911/https___www_searchculture_gr_aggregator_edm_mingei_000155_c3ec5fe2_e189_4a4e_88f0_79e3718a1dcd
https://www.europeana.eu/el/item/911/https___www_searchculture_gr_aggregator_edm_mingei_000155_c3ec5fe2_e189_4a4e_88f0_79e3718a1dcd

D1.1 The deliverable name as in the GA

Craeft D1.1 98/105

consumption per unit of computing power. The use of server virtualization technologies by cloud
providers allows multiple virtual servers to run on a single physical server, contributing to higher server
utilisation rates and reduced energy consumption compared to traditional setups. Additionally, cloud
services enable dynamic scaling of resources based on demand, ensuring that energy consumption is
optimised. During periods of low demand, fewer servers are active, while additional resources can be
provisioned during peak demand, resulting in a more efficient use of energy resources.

3.7. Other enhancements

Two types of exports have been automated and the online viewing of 3D models has been upgraded.

3.7.1. Knowledge element to file

When visiting a page that displays the contents of a knowledge element, it is often that users may wish to
copy this content, e.g. to include it in a document that they are writing etc. Copying from the screen is
possible, but rather inefficient and, at the same time, does not preserve the formatting hierarchy.

To ease users in this task, a button was added that provides the contents of the knowledge element in an
XML file that contains the documentation of knowledge elements organised as per the RDF standard. This
is demonstrated in the figure below.

Figure 38. The page for a crafted artefact illustrates the export-to-file capabilities of the platform.

As the exported file is in XML format it can be directly incorporated by several word processing software
suites, including the widely-used MS Word software, as well as Web browsers. Moreover, the XML file can
be directly converted to HTML by several software utilities.

3.7.2. Export for Europeana ingestion

D1.1 The deliverable name as in the GA

Craeft D1.1 99/105

The RDF export mentioned in the previous subsection is utilised for the automation of meta-data exports
for submitting them to National Aggregators and eventually being ingested by Europeana. System
(MOP/CAP) administrators can define a collection of items to be submitted and using the aforementioned
automation the meta-data are automatically exported in an online file that is sent to the national
aggregator.

An example is shown in the figure below.

Figure 39. A Web page from the Greek National Aggregator, for a collection of 50 handcrafted garments.

The example shows a collection of 50 handcrafted garments on the page of the Greek National
Aggregator, submitted in the context of Craeft. The digital assets for each garment are images and a 3D
model obtained by photogrammetric reconstruction. This content was ingested by the National
Aggregator on 18 December 2023 and has been forwarded for ingestion by Europeana. The automatically
generated file for this collection can be found at the following link:

D1.1 The deliverable name as in the GA

Craeft D1.1 100/105

http://api.mingei-
project.eu/public/api/metadata?verb=ListRecords&metadataPrefix=edm&set=brandingHeritage

while the page of the Greek National Aggregator for this collection can be found here:

https://www.searchculture.gr/aggregator/portal/collections/brandingHeritage/search?page.page=1&sc
rollPositionX=4057&sortByCount=false&resultsMode=GRID&sortResults=SCORE

3.7.4. Online viewing of 3D models
To enhance the digital presentation of our craft artefacts, we have transitioned our website's 3D viewing
capabilities to the Babylon.js engine. This upgrade aligns with our commitment to leveraging cutting-edge
technology to make cultural and artistic works more accessible and engaging to a global audience.

The primary objectives behind this upgrade were to:

 Improve the visual quality and interactivity of 3D models.

 Enhance user experience with smoother navigation and more intuitive controls.

 Enable advanced features such as real-time lighting, shadows, and animations.

 Ensure broad accessibility across various devices and browsers.

 Foster a deeper appreciation of craft artefacts through immersive digital experiences.

The upgrade process involved the following steps: (1) we evaluated existing 3D model presentation
frameworks and identified their advantages and limitations; we chose Babylon.js based on its
performance, feature set, and compatibility. Babylon.js was seamlessly integrated into the existing CAP
architecture, without any disruption to the user experience and knowledge of system operation; (3)
thereafter, we conducted tests across multiple devices and browsers to ensure compatibility and user
experience consistency.

The main benefits of this upgrade are the increased visual quality in the presentation of 3D models and
the better interactivity features of this viewer. Babylon.js's provides advanced rendering capabilities that
significantly improve the visual quality of our 3D craft artefacts, with realistic textures, lighting, and
shadows that provide a more lifelike and engaging experience. In terms of interactivity, users can now
interact with the 3D models in more meaningful ways, including zooming, rotating, and exploring different
parts of each artefact, which enhances educational and engagement opportunities. Moreover, full-screen
viewing and automated rotational animations are provided, as well as integration with 3D and VR viewing
are provided.

Figure 41. A marble sculpture is shown in the Babylon.js viewer using illumination and shadow features of the viewer.

http://api.mingei-project.eu/public/api/metadata?verb=ListRecords&metadataPrefix=edm&set=brandingHeritage
http://api.mingei-project.eu/public/api/metadata?verb=ListRecords&metadataPrefix=edm&set=brandingHeritage
https://www.searchculture.gr/aggregator/portal/collections/brandingHeritage/search?page.page=1&scrollPositionX=4057&sortByCount=false&resultsMode=GRID&sortResults=SCORE
https://www.searchculture.gr/aggregator/portal/collections/brandingHeritage/search?page.page=1&scrollPositionX=4057&sortByCount=false&resultsMode=GRID&sortResults=SCORE

D1.1 The deliverable name as in the GA

Craeft D1.1 101/105

Technically, Babylon.js has an optimized rendering engine ensuring that 3D models load quickly and run
smoothly, even on mobile devices, providing a seamless experience for all users. With Babylon.js, our 3D
models are accessible on a wide range of devices and browsers, ensuring that more users can enjoy our
digital collections without technical barriers.

In the future, we plan to explore further enhancements, including personalized user experiences, AR and
VR integrations, and the use of interactive guides and educational content alongside our 3D models.

D1.1 The deliverable name as in the GA

Craeft D1.1 102/105

4. Conclusions

This document has presented the CRAEFT Ontology and the CRAEFT authoring Platform.

The CRAEFT Ontology, named CrO, is an application ontology used for representing crafts in the CRAEFT
project. For interoperability, the CrO is built on standards. It is an extension of the CIDOC CRM with the
concepts needed for representing processes at three different levels:

● The schema level, including descriptions of processes and their components, is used for
descriptive and prescriptive purposes, as illustrated in Section 2.5.1.1.

● The virtual level, including descriptions of the execution of processes and actions performed by
digital agents in the virtual world, is used for comparative purposes, as illustrated in Section
2.5.1.2.

● The physical level, including descriptions of the execution of processes and actions performed by
human agents in the real world, is used for documentation and preservation purposes, as
illustrated in Section 2.5.1.3.

The notion of process is inspired by the UML conceptualization of activities, providing primitive categories
for processes, their components and the interrelations of these components. At the physical level,
processes are also seen as narratives, thereby acquiring narrations and presentations as fundamental
aspects, not considered in the UML conceptualisation, but crucial for the achievements of the CRAEFT
objectives. The ontology of narratives, previously developed by the authors, is therefore a fundamental
component of the CrO.

Finally, the CrO is expressed in the standard language OWL 2 DL, the most expressive representative of
the OWL family of languages that retains computational amenability.

The CrO has been applied to represent a few realistic samples of processes and actions, to the end of
showing its adequacy preliminarily. A more substantial evaluation of the ontology will be performed in
the prosecution of the project, putting the CrO at work on the Representative Craft Instances selected by
the project.

The CrO allows linking to the Getty AAT, CONA, TGN, and ULAN dictionaries, as a way to enhance
interoperability while enriching the online semantic documentation system. Users can thereby benefit
from:

● Expanded vocabulary for more accurate and standardised artefact descriptions.
● Detailed insights into art collections, enhancing cultural exploration.
● Geospatial context for cultural heritage locations, improving contextual understanding.
● Artist information for a deeper appreciation of the creators behind cultural artefacts.

The integration of Getty AAT, CONA, TGN, and ULAN into our online semantic documentation system
marks a milestone in advancing the platform's capacity for cultural heritage documentation. This
enhancement positions our system as a comprehensive and authoritative resource for users interested in
exploring and understanding cultural artefacts, collections, and the individuals behind the creations.

D1.1 The deliverable name as in the GA

Craeft D1.1 103/105

The Craeft Authoring Platform (CAP) is a Web-based, online, multiple-user authoring platform for the
documentation of traditional crafts that is under development. It is functional and accessible online,
although it is not yet in its final form. The CAP is based on the Mingei Online Platform (MOP) developed
in the Mingei Innovation Action.

The implementation of multilingual support has resulted in a more inclusive and user-friendly system.
Users can now document traditional crafts in multiple languages, promoting diversity and inclusivity in
the knowledge preservation process.

The implementation of multilingual support in the online documentation system is a step towards
inclusivity and accessibility. This enhancement ensures that the platform remains a valuable resource for
individuals across different linguistic backgrounds, fostering the preservation and exchange of traditional
craft knowledge.

The implementation of enhanced entity relationships and garbage collection has resulted in a more
cohesive and accurate documentation system. Users benefit from a clearer visualisation of associations,
while the garbage collection mechanism ensures the removal or correction of unreferenced entities for
improved data quality.

The updates to the online documentation system mark an advancement in both user experience and
database cleanliness. The strengthened relationships between knowledge entities and the introduction
of garbage collection contribute to the system's overall efficiency and reliability, ensuring a robust
platform for the documentation of traditional crafts.

D1.1 The deliverable name as in the GA

Craeft D1.1 104/105

References

[1] Boris Motik, Peter F. Patel-Schneider, and Bijan Parsia. OWL 2 Web Ontology Language structural
specification and functional-style syntax (second edition). W3C recommendation, W3C, December
2012. http://www.w3.org/TR/ 2012/REC-owl2-syntax-20121211/.

[2] Martin Doerr. The CIDOC Conceptual Reference Model: An ontological approach to semantic
interoperability of metadata. AI Mag., 24(3):75–92, September 2003.

[3] The CIDOC CRM Special Interest Group. Definition of the CIDOC Conceptual Reference Model. Version
7.2.3, May 2023. Available from https://www.cidoc-crm.org/releases_table

[4] Technical Committee: ISO/TC 46/SC 4 Technical interoperability. ISO 21127:2014 - Information and
documentation — A reference ontology for the interchange of cultural heritage information.
https://www.iso.org/standard/57832.html

[5] N. Guarino. Formal ontology in information systems. In Proceedings of FOIS 98, pages 3–15. IOS Press,
Amsterdam, 1998. Amended version.

[6] V. Bartalesi, C. Meghini, and D. Metilli. Representing Narratives in Digital Libraries: The Narrative
Ontology. Semantic Web, 12(2), 241-264.

[7] Simon Cox, Chris Little. Time Ontology in OWL. W3C Recommendation 19 October 2017.
https://www.w3.org/TR/owl-time/

[8] DCMI Metadata Terms. Dublin Core Metadata Initiative.
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/

[9] James Rumbaugh, Ivar Jacobson, Grady Booch. The Unified Modeling Language Reference Manual.
Second Edition. Addison-Wesley. 2005.

[10] R. Cyganiak, D. Wood, and M. Lanthaler. RDF 1.1 concepts and abstract syntax. W3C
Recommendation, WWW Consortium, February 2014. http://www.w3.org/TR/rdf11-concepts/.

[11] Dan Brickley and R.V. Guha. RDF schema 1.1. W3C Recommendation, WWW Consortium, February
2014. http://www.w3.org/TR/rdf-schema/

[12] XML schema definition language (XSD) 1.1 part 2: Datatypes. W3C Recommendation, WWW
Consortium, April 2012. http://www.w3.org/TR/xmlschema11-2/.

[13] Hiebel, G., Doerr, M. & Eide, Ø. CRMgeo: A spatiotemporal extension of CIDOC-CRM. Int J Digit Libr
18, 271–279 (2017). https://doi.org/10.1007/s00799-016-0192-4. Formal specifications available at
https://www.cidoc-crm.org/crmgeo/home-5

[14] Chris WELTY and Richard FIKES. A Reusable Ontology for Fluents in OWL. Proceedings of the 2006
conference on Formal Ontology in Information Systems: (FOIS 2006) Frontiers in Artificial Intelligence
and Applications. Volume 150: Formal Ontology in Information Systems. IO-Press. May 2006. Pages
226–236.

[15] S. Borgo, R. Ferrario, A. Gangemi, N. Guarino, C. Masolo, D. Porello, E. Sanfilippo, L. Vieu. DOLCE: A
descriptive ontology for linguistic and cognitive engineering. Applied Ontology, vol. 17, no. 1, pp. 45-
69, 2022.

[16] Cominelli F., 2011. Governing Cultural Commons: The case of traditional craftsmanship in France. In
Biennial Conference. International Association for the Study of the Commons, Hyderabad, India, 1–
27.

[17] Donkin L., 2001. Crafts and Conservation. Report. ICCROM.
[18] Zabulis X, Partarakis N, Meghini C, Dubois A, Manitsaris S, Hauser H, Magnenat Thalmann N, Ringas

C, Panesse L, Cadi N, Baka E, Beisswenger C, Makrygiannis D, Glushkova A, Padilla BEO, Kaplanidi D,
Tasiopoulou E, Cuenca C, Carre A-L, Nitti V, Adami I, Zidianakis E, Doulgeraki P, Karouzaki E, Bartalesi
V, Metilli D. A Representation Protocol for Traditional Crafts. Heritage. 2022; 5(2):716-741.
DOI:10.3390/heritage5020040.

https://www.cidoc-crm.org/releases_table
https://www.w3.org/TR/owl-time/
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/xmlschema11-2/
https://www.cidoc-crm.org/crmgeo/home-5

D1.1 The deliverable name as in the GA

Craeft D1.1 105/105

[19] X. Zabulis, N. Partarakis, A. Argyros, A. Tsoli, A. Qammaz, I. Adami, P. Doulgeraki, E. Karuzaki, A.
Chatziantoniou, N. Patsiouras, E. Stefanidi, Z. Stefanidi, A. Rigaki, M. Doulgeraki, A. Patakos, S.
Manitsaris, A. Glushkova, B. Olivas-Padilla, D. Menychtas, D. Makrygiannis, C. Meghini, V. Bartalesi,
D. Metilli, N. Magnenat-Thalmann, E. Bakas, N. Cadi, D. van Dijk, P. de Sterke, M. Wippoo, M. van der
Vaart, C. Ringas, M. Fasoula, E. Tasiopoulou, D. Kaplanidi, L. Pannese, V. Nitti, C. Cuenca, A. Carre, A.
Dubois, H. Hauser, C. Beisswenger, D. Blatt, I. Neumann, U. Denter. The Mingei Handbook,
https://doi.org/10.5281/zenodo.6580124

[20] Meghini C., Bartalesi V., Metilli D., Partarakis N., and Zabulis X.. 2020. Mingei Crafts Ontology.
Retrieved from https://zenodo.org/record/3742829#.Xw1prigzZaR

[21] Meghini C. and Doerr M.. 2018. A first-order logic expression of the CIDOC conceptual reference
model. Int. J. Metadata Semant. Ontol. 13, 2 (2018), 131–149.

[22] Doerr M.. 2003. The CIDOC conceptual reference model: An ontological approach to semantic
interoperability of metadata. AI Mag. 24, 3 (2003), 75–92.

[23] Cox S. and Little C. 2017. Time Ontology in OWL, W3C Recommendation. Retrieved from
https://www.w3.org/TR/owl-time/

[24] ISO 21127:2014. Information and documentation—A reference ontology for the interchange of
cultural heritage information.

[25] Foundation Open Street Map. 2021. Open Street Map. https://www.openstreetmap.org/.

https://doi.org/10.5281/zenodo.6580124
https://zenodo.org/record/3742829#.Xw1prigzZaR
https://www.w3.org/TR/owl-time/
https://www.openstreetmap.org/

