

This project has received funding from the European Commission, under the Horizon
Europe research and innovation programme, Grant Agreement No 101094349.
http://www.craeft.eu/

CRAEFT

Craft-specific action simulations
Project Acronym Craeft

Project Title Craft Understanding, Education, Training, and Preservation for Posterity and
Prosperity

Project Number 101094349

Deliverable Number 3.1

Deliverable Title Craft-specific action simulations

Work Package 3

Authors Xenophon Zabulis, Panagiotis Koutlemanis, Ioanna Demeridou, Nikolaos
Partarakis, Peiman Fallahian, Nikolaos Nikolaou

Number of pages 74

http://www.craeft.eu/

D3.1 Craft-specific action simulations

Craeft D3.1 2/74

Executive summary

Section 1 outlines the scope and objectives of this document, providing an overview of the content
covered.

Section 2 reviews relevant literature in the field of craft-related simulations. The review begins with
an exploration of techniques for simulating the interaction of light with objects, followed by a
discussion on action simulations, particularly those that utilize physics to predict the outcomes of
mechanical actions and those specific to traditional crafts.

Section 3 introduces and demonstrates a visualization toolbox built on the Mitsuba 3 physics-based
renderer. This toolbox streamlines the process of scene composition by defining elements such as
physical entities, lights, observation viewpoints, and virtual cameras in simple terms. Using this
technology, we can realistically simulate the appearance of artefacts and materials based on their
composition. Additionally, it enables the creation of presentation videos that simulate the
appearance of objects in various environments and from different viewpoints. Integration with the
physics-based simulators developed in Craeft allows for the realistic presentation of material-specific
crafting actions.

Section 4 details a software interface to the PhysX physics-based simulator, which employs GPU
parallelization to simulate physical phenomena in real-time. This interface manages the
representation of physical entities within a simulated scene and utilizes the PhysX engine to execute
prescribed actions. It also provides bindings for real-time manipulation of tools within the scene using
a keyboard, mouse, VR, or haptic controller. Using this technology, we have developed a set of craft-
specific simulators focused on creating solids by revolution, with specialized applications for pottery,
woodturning, and glassblowing.

Section 5 presents our approach to achieving physically realistic and real-time simulations. Given the
high computational demands of such simulations, real-time execution is typically infeasible. To
address this, we propose an artificial intelligence (AI) approach that learns to approximate simulation
results in real-time. This AI is trained on standard simulation data and their parameter descriptions,
enabling it to approximate results even with limited training data. The approach is integrated with the
PhysX physics engine, allowing for real-time approximation of original simulations.

Section 6 showcases the application of the tools we developed, resulting in simulators that produce
digital and realistic objects by replicating the crafting processes and physical constraints associated
with their creation. These simulators are intended for use in the Design Studio to create designs of
objects that are physically realizable and that follow the production procedure that is needed to
realise them. Their implementation is further demonstrated in Deliverable D5.1, “Craft Design
Revisited,” with the technical aspects detailed in this document.

Section 7 concludes the deliverable with a summary of findings and provides directions for future
work.

D3.1 Craft-specific action simulations

Craeft D3.1 3/74

Document history

Date Author Affiliation Comment

19/07/2024 Xenophon Zabulis FORTH Drafting

19/07/2024 Xenophon Zabulis FORTH Drafting

19/07/2024 Xenophon Zabulis FORTH Drafting

Abbreviations

AR Augmented Reality

CAP CRAEFT Authoring Platform

CH Cultural Heritage

CHI Cultural Heritage Institutions

FEM Finite Elements Method

HCD Human Centred Design

HCI Heritage Computer Interaction

ICH Intangible Cultural Heritage

IPR Intellectual Property Rights

MET Material Engagement Theory

MoCap Motion Capture

NURB Non-uniform rational B-spline modelling

D3.1 Craft-specific action simulations

Craeft D3.1 4/74

Table of contents

Executive summary 2

Document history 3

Abbreviations 3

Table of contents 4

1. Introduction 6

2. Related work 8

2.1. Appearance simulation 8

2.1.2. Digital representation of appearance 8

2.1.1. Photorealistic rendering 9

2.2 Activity simulation 9

2.2.1. Physics-based simulation 9

2.2.2. Game engines based on physics simulation 10

2.2.3. Craft-specific simulations 10

3. Visualisation toolbox 14

3.1.1. Objects 15

3.1.2. Materials 16

3.1.3. Lighting 20

3.1.4. Viewpoint 20

3.1.5. Outputs 21

3.1.6. Execution 22

3.1.7. Integration of physics-based simulation and rendering 22

4. Action simulation toolbox 25

4.1. Action simulation toolbox 25

4.1.1. Rationale 25

4.1.2. Technical specification 25

3.2.1. Simulated objects 26

3.2.2. SimplePhysX5 API classes 26

3.2.3. Mesh cooking 27

3.2.4. Limitations 27

4.2. Solids by revolution 27

4.2.1. Template image 28

D3.1 Craft-specific action simulations

Craeft D3.1 5/74

4.2.2. User-defined tools 28

4.2.3 Algorithmic workflow 28

4.2.4. Tools 31

4.2.5. Example 32

5. Interactive simulations 34

5.1. Training data 34

5.1.1. Object interaction data 34

5.1.2. Thermal-dependent data 36

5.2. Material approximations 39

5.2.1. Methods 39

5.2.2. Implementation 41

5.2.3. Results 43

6. Process-specific simulators 49

6.1. Moulded, cast, and sculpted objects 49

6.2.1. Traditional stained-glass windows 50

6.2.1.1. Glass pieces 51

6.2.2.2. Skeleton rig 52

6.2.3. Composite objects 55

6.2.3.1. Planar objects 55

6.2.3.2. 3D objects 57

6.3. Lamps 59

6.3. Cane working 60

6.4. Metal engraving 61

6.5. Ceramics and glazes 64

7. Conclusions 67

References 68

D3.1 Craft-specific action simulations

Craeft D3.1 6/74

1. Introduction

In recent years, the convergence of traditional craftsmanship with advanced computational simulations
has unveiled new opportunities for preserving, exploring, and innovating within craft practices. As these
technologies progress, they present unprecedented possibilities for simulating and visualising intricate
interactions between materials, tools, and techniques, enriching our understanding and the creative
potential within the craft domain.

This deliverable aims to contribute to the rapidly evolving field of craft simulations by providing tools
that empower practitioners to push the boundaries of what is achievable in both digital and physical
contexts. Our work not only preserves the essence of traditional craftsmanship but also lays the
groundwork for future innovations in the craft industry.

The following sections detail our efforts in developing and refining a comprehensive suite of tools and
methods designed to simulate craft-related activities with high fidelity. Our objective is to bridge the gap
between traditional craftsmanship and modern digital tools, enabling artisans, designers, and
researchers to explore the nuances of craft techniques within a virtual environment. We strive to offer
tools that replicate not only the visual and physical properties of crafted objects but also predict the
outcomes of specific crafting actions with remarkable precision.

Section 2 critically reviews existing literature on craft-related simulations, focusing particularly on the
interaction of light with objects and the simulation of mechanical actions within traditional crafts.

Section 3 introduces our visualisation toolbox, a powerful tool based on the Mitsuba 3 physics-based
renderer. This toolbox simplifies scene composition and enables realistic simulations of materials and
artefacts. It serves as an essential infrastructure tool, particularly within the Design Studio, facilitating
material-specific and photorealistic visualisations. Additionally, the toolbox supports environment-
specific visualisations, allowing prospective clients to envision how a particular artefact would appear in
a specific setting, such as their home.

Section 4 discusses the integration of a software interface with the PhysX physics engine, enabling real-
time simulation of physical phenomena and the development of craft-specific simulators. This
middleware software, known as the action simulation toolbox, is crucial for Craeft because traditional
scientific FEM simulations are computationally intensive and cannot be executed interactively in real
time. Although PhysX does not simulate all the phenomena and material properties as comprehensively
as a FEM multi-physics simulator, our toolbox implements three elementary types of actions according
to the action classification taxonomy outlined in D2.1, "Action and Affordance Modelling," using the
capabilities available in PhysX. Similar to the visualisation toolbox, the action simulation toolbox
simplifies the definition of crafting scenes, including workspace, workpiece(s), and tools. It maintains a
3D representation of the scene and provides software bindings, enabling users to manipulate tools in
real-time using various computer controllers, whether conventional (i.e., mouse, keyboard) or
immersive (i.e., VR and haptic controllers). Moreover, the toolbox utilises PhysX to provide real-time 3D
visualisations of the scene.

Section 5 presents an innovative approach to achieving real-time simulations through artificial
intelligence, which approximates the results of computationally intensive simulations. Our method uses
FEM simulation results, obtained after hours of computation, to train an AI network capable of
approximating these results in real time. This approach is integrated with PhysX to exploit its built-in
functions and fine-tune its parameters, allowing it to approximate the actions described in the training
data for a given material. This technique is incorporated into the action toolbox, enabling these
approximations to be used in real-time, interactive applications.

D3.1 Craft-specific action simulations

Craeft D3.1 7/74

In Section 6, we apply the aforementioned tools to create craft and process-specific simulations that
generate virtual artefacts using realistic manufacturing processes. This approach is vital for Craeft as it
(a) ensures that users design physically realisable artefacts, and (b) provides a process description that
can be translated into instructions for practitioners. Our initial applications of this approach include
simulations for moulded and sculpted solids, stained glass windows, lamps, cane-working products,
metal engravings, and glazed pottery.

Finally, Section 7 concludes the deliverable with a summary of our findings and outlines potential
directions for future research and development.

D3.1 Craft-specific action simulations

Craeft D3.1 8/74

2. Related work

We classify the reviewed literature into two classes. The first regards the interaction of light with objects
and the way that this can be approximated and simulated in the computer. The second regards a review
of action simulations, specifically those that use physics to predict the results of mechanical actions and
those related to traditional crafts.

2.1. Appearance simulation

The work reviewed in this subsection relates to representing and simulating the geometrical and
material properties of objects that are relevant to their appearance.

2.1.2. Digital representation of appearance

To date, CH research has focused on the visualization of existing artefacts that have been digitized (or,
following Computer Vision jargon, “reconstructed”). This type of digitization is based on scanning and
modelling technologies, which have become valuable tools in the photographic and 3D documentation
of cultural heritage artefacts. High-resolution 3D laser scanning and photogrammetry are the most
commonly used to capture precise geometrical details of artefacts as well as their photorealistic
appearance. A recent and comprehensive review of 3D scanning technologies and approaches can be
found in The Mingei Handbook on Heritage Craft representation and preservation, at Step 3 “Craft
recording”, in Section 3.2, “Digitisation of endurant assets”.

In addition, other digitization methods focus on the material composition of artefacts and, in this case,
employ imaging techniques that reveal properties imperceptible to humans, because they identify
features that are visible outside the visible spectrum (i.e. IR and UV illumination). In [1], advances in
multi-spectral and hyperspectral imaging for archaeology and art conservation are reviewed, informing
on their use in the identification of the materials used and contributing to their conservation and
preservation.

Despite these technologies, most of the visualization techniques focus on Lambertian, or “matte”,
surfaces. The rendering of shiny, transparent and translucent materials is rendered by explicitly
specifying the 3D model regions that have this property. The simulation of the appearance of these
materials follows some simple rules but does not simulate the interaction of light with individual types
of materials.

During the last few years, Neural Radiance Fields (NeRFs) [5, 6] were introduced as a method for
synthesizing novel views of complex 3D scenes from a sparse set of 2D images. They leverage deep
learning to model the volumetric scene representation by encoding the scene into a neural network,
which can then be queried to render new views. This approach has gained significant attention due to its
ability to produce highly realistic images and its applications in various fields, including cultural heritage
visualization. NeRFs can capture the appearance of challenging materials, however, they cannot be used
to render scenes with different properties (i.e., illumination and décor) to the scene in which they were
imaged.

https://zenodo.org/records/7267365

D3.1 Craft-specific action simulations

Craeft D3.1 9/74

2.1.1. Photorealistic rendering

The visualization of cultural heritage artefacts has seen significant advancements in recent years, driven
by technological innovations and interdisciplinary research. With the support of 3D graphics and
immersive presentation technologies (i.e., AR, VR) interactive and educational experiences have been
produced, making cultural heritage more accessible to broader audiences. Real-time rendering
techniques are essential for interactive applications such as VR and AR. These techniques leverage the
parallel processing capabilities of GPUs to render scenes efficiently [2].

Photorealistic rendering aims to create images that are indistinguishable from real photographs. This
technique is valuable for producing accurate representations of artefacts. In [3], the principles of global
illumination, which model the complex interplay of light in a scene to achieve photorealism are
presented. In [4], image-based lighting techniques are employed using photographs of real-world
lighting conditions to illuminate 3D models, enhancing the realism of renderings.

In terms of material-specific appearance simulation, a technical approach is proposed that is based on
advanced, physically-based rendering software infrastructure called “Mitsuba 3” [16], which has been
for research and educational purposes. This infrastructure simulates the interaction of light with
materials in a highly accurate manner, enabling the creation of photorealistic images.

2.2 Activity simulation

Interactive, physics-based simulations have become vital tools for the study and preservation of
traditional crafts and mechanical operations. These simulations employ computational modelling of the
physical behaviour of materials and mechanisms, aiming to provide immersive and educational
experiences.

2.2.1. Physics-based simulation

Physics-based simulations focus on the physical behaviour of mechanical systems—including structures,
materials, and dynamics—and have been pivotal in various fields of engineering and science. The Finite
Element Method (FEM), is foundational to many mechanical simulations and was popularized by Clough
and others in the 1950s [30, 31]. FEM allows the simulation of complex mechanical systems by breaking
them down into smaller, simpler parts known as finite elements. Initially, FEM was applied primarily to
civil engineering problems, such as analysing the stress and strain in bridges and buildings [32]. The
aerospace and automobile industry played a crucial role in driving the early adoption of mechanical
simulations [33].

The commercialization of FEM software made these tools more widely accessible to engineers across
various industries. Notable commercial FEM software included ANSYS [34, 37], NASTRAN [35], and
Abaqus [36]. In parallel, Computational Fluid Dynamics (CFD) emerged as a critical tool for simulating
fluid flows around mechanical structures, such as aircraft wings and automotive bodies, with software
suites like FLUENT and CFX providing instrumental in advancing this field [38, 39].

Traditionally, generic and interactive simulations are based on “physics engines” [10]. Physics engines
are software libraries which simulate the physical behaviour of objects under prescribed dynamic and
kinematic configurations. In their majority, they simulate rigid objects, their potential collisions, and
their behaviour thereafter [11]. Nevertheless, if real-time performance is required the structural
complexity of involved models has to be low (i.e., their 3D meshes should be comprised of few polygons.

D3.1 Craft-specific action simulations

Craeft D3.1 10/74

Realistic simulations of actions upon materials are found in the field of scientific simulation. Finite
Element Analysis (FEA) [87, 88] is a numerical technique that utilizes the Finite Element Method (FEM)
to simulate and analyse the behaviour of physical systems. FEA is the de facto standard in state-of-the-
art physical simulation. The idea behind the FEA is to divide complex physical systems into smaller,
simpler, and very local (or finite) elements. The behaviour of each element is predicted by mathematical
equations that describe the physical laws governing an action.

Although widely adopted in modern mechanics and engineering, scientific simulation has been not
widely applied in the domain of crafts. In [89], the formation of knots is studied using FEM. Mechanical
models for fibres are proposed in [90] that account for elongation, bending and torsion forces, and the
frictional contacts between them. In [91], the metalworking processing is studied to understand the
quenching process and results of a computer simulation based on metallo-thermo-mechanics are
presented to know how the temperature, metallic structure and stress/distortion vary in the process.

2.2.2. Game engines based on physics simulation

The integration of physics simulation into game engines has significantly advanced over the past few
decades, evolving from basic collision detection to sophisticated simulations of rigid bodies, soft bodies,
fluids, and other physical phenomena. In the early stages of game engine development, physics
simulations were rudimentary and limited to basic collision detection. An example of this is id Tech 1,
which featured simple collision handling without realistic physics [40]. More advanced physics
simulations enabled interactions between game objects, especially in the context of rigid body dynamics
[41].

As physics engines matured, they were increasingly integrated into mainstream game engines like
Unreal Engine and Unity. These engines not only supported rigid body dynamics but also expanded to
more complex simulations, including cloth, fluid dynamics, and destructible environments [42]. The
Unreal and Unity 3D engines were among the first to incorporate middleware physics engines like PhysX
[43].

The application of physics simulations in game engines has expanded beyond traditional gaming into
areas such as VR and AR, where physics-based interactions are essential for creating immersive and
engaging experiences [44]. Additionally, game engines like Unreal Engine are increasingly used in virtual
production for film and animation, where real-time physics simulations enable dynamic scene creation
[45]. Furthermore, these engines are employed in serious games and simulations for engineering,
architecture, and medical training, where accurate physics simulations are necessary for realistic virtual
environments [46].

Balancing realism with performance remains a significant challenge, particularly on hardware-limited
platforms like consoles and mobile devices. Techniques such as Level of Detail (LOD) for physics,
hardware acceleration, and multi-threading are continually optimized to address these challenges [47].
Additionally, the demand for real-time simulations is growing, especially in VR/AR and multiplayer online
games, necessitating more efficient and scalable physics simulations. Future developments in game
engines may also involve the integration of AI to dynamically adjust physics simulations, thereby
creating more adaptive and responsive environments [48].

2.2.3. Craft-specific simulations

D3.1 Craft-specific action simulations

Craeft D3.1 11/74

Traditional crafts involve complex interactions between materials and tools, often requiring a deep
understanding of physical properties and manual skills. Interactive, physics-based simulations can
accurately replicate these processes, offering new ways to preserve and teach these crafts.

2.2.3.1. Presentation of crafting actions

In [54], a mobile Augmented Reality (AR) system that superimposes 3D craft objects in space is
proposed. The system triggers the virtual demonstration of their usage using a multi-touch surface. In
[55], a Head Mounted Display is used to present traditional craft objects with high presence and
absorption. In [56], an AR system augments a given physical object with audio and visual digital assets,
relevant to its making. A user study is conducted to bring insight into methods of combining virtual and
physical materials, to present a narrative located in the decoration of the object.

Virtual Reality (VR) and handheld controllers are used for more realistic virtual handling and interaction
with the presented 3D craft objects. In [57], VR demonstrations for two crafts are provided, for the
production of two Greek traditional alcoholic beverages. The demonstrations employ pre-recorded
interactions with tools and machines, which in VR can be viewed from any viewpoint. In [58], visitors are
immersed in a VR environment where they can perform some indicative woodworking tasks, in the
context of introducing the usage of dovetailing carpentry tools. The simulation of potential interactions
is pre-recorded and shown as animations.

2.2.3.2. Textiles

Textile weaving simulations regard the patterns and the interweaving of threads. In [7], a system for the
interactive design of woven structures is proposed, enabling the simulation of the weaving process and
the visualization of the resulting fabric in real-time.

A broad range of studies exist on the mechanical characterisation of textiles (see [92-95] for reviews).
Several pertinent works also focus on how textiles are to deform and distort when worn, e.g. [96, 97].
The most relevant work to the purposes of this work is TexGen [99], open-source software for modelling
the geometry of textile structures, as well as including textile mechanics, permeability and composite
mechanical behaviour. In the computations pertinent to the manufacturing of textiles, we use the
TexGen simulator to model the 3D structure of fabrics.

Works that predict the visual appearance of crafted artefacts are found in the textile industry.
Prominent examples are WeaveIt [78], Weaving Design Software [79], ArahneWeave [80], pixeLoom
[81], WeavePoint [82], and WIF Visualizer [83]. The 3D Knitting Simulation [84] was developed for flat
and circular knitting technology. Given the fabric design, the simulator creates realistic visualisations for
Jacquard Raschel, Multibar Lace, and warp-knit fabrics. More relevant to handcrafted textiles a physics-
based heuristic model is used in [85] to predict the visual results of painting on fabric, using thin‐brush
dyeing. The simulator focuses on modelling 2D fluid simulation on fabrics to reduce computational
burden. The dyeing algorithm is based on an ink‐wash painting algorithm [86].

2.2.3.3. Robotic re-enactment

Automated manufacturing of crafting products was initiated in the Industrial Revolution and textile
manufacturing. Today robotic automation is the norm in manufacturing industries [59] for precisely
predefined tasks. In this subsection, work that attends to the recreation of human crafting motion is
reviewed.

D3.1 Craft-specific action simulations

Craeft D3.1 12/74

Mimicking human freehand motion using robots has been mainly studied for carving tasks. As robotic
motion has fewer and different degrees of freedom than humans, for a robot to achieve the same tool
movement as a human, it is required to convert human kinematics for the available robotic
embodiment. In [60], human movements are analysed into their principal components and then
encoded to robot kinematic instructions. In [61-63], these components were approximated through
machine learning.

Taking an inverse approach, other studies focused on achieving the same result as human actions.
Studies of carving strokes were conducted in [60, 64], to establish a correspondence between human
results and robotic motion that approximates the same results. In [65], a step forward was made by
adding some sensor-based robotic autonomy in the construction of wooden structures.

2.2.3.4. Games

Some video games provide creative interaction by replicating basic crafting aspects in the contexts of
virtual building and decoration.

Creating virtual pottery using wheel-throwing and subsequent decoration is found in several games
engaging creativity (e.g. 3D Pottery [66], Pottery Master [67], and Pottery Simulator [68]), albeit not
exhibiting high levels of realism, nor addressing practical constraints.

In the adventure game genre [69], the prerequisite of crafting or recipe materials is addressed, by
requiring them to be available for the execution of an action. Although recipes do not contain a
simulation of how materials are treated, they provide constraints. A central concept in these games is
the “recipe”, or the representation of the knowledge necessary to transform a collection of needed
ingredients (materials) into a new object. For example, a recipe for a pickaxe specifies two twigs and two
flints as the necessary materials. Certain recipes regard only specific types of materials, such as a recipe
for tailors that transform fibres into fabric or a recipe for blacksmiths that transform bulk metal into a
sword.

Using human motion in gaming interaction has proliferated since the Wii controller. The Knitting
Simulator 2014 [70], requires the manipulation of controllers that resemble knitting needles. The usage
is simplified as needle motion is only used to advance a knitting animation. In [71], a VR controller is
used to edit solids by revolution in wood-turning lathe crafting simulation. An architecture for
integrating the Unity game engine as a platform for craft simulation is proposed in [72].

PhysX [73] is a physics engine middleware SDK for the development of gaming applications that are
based on hardware acceleration to achieve real-time performance. It supports rigid and body dynamics
and volumetric fluid simulation. However, it cannot simulate the generality of phenomena in the context
of this work, as it does not support all of the material properties and damage models of interest in this
work.

2.2.3.5. Serious games

Woodwork Simulator [74] recreates the experience of working in a carpenter’s workshop. It provides
reasonable approximations of the effect of virtual saws, drills, glue, chisels, and sandpaper on virtual
wood. Educational uses are found in workspace geography and safety, training in the use of tools, and
the planning of woodworking processes that implement specific designs.

In [75], a blacksmith’s forge is simulated in VR providing simplified tool interaction that shapes metallic
pieces parts using 3D controllers; the crafted structures can be 3D printed.

D3.1 Craft-specific action simulations

Craeft D3.1 13/74

Counting and calculating tasks are intrinsic to the weaving of fabrics and wicker. In [76], these capacities
are trained to make calculus for young students more interesting, intuitive, and educational on Native
American Heritage.

In [77], glasswork actions are simulated to accustom to the weight, balance, and handling of a real
blowpipe performed at a real glassblower’s bench. A Mixed Reality system tacks human hands and
illustrates the user against exemplar hand movements for that action.

Pottery simulations involve the manipulation of clay on a rotating wheel. In [8], a haptic simulation of
pottery-making provides users with tactile feedback, enhancing the realism of the experience and
enabling the replication of traditional techniques.

Metalworking processes such as forging, casting, and machining involve significant physical
transformations. In [12], deformable models that simulate the plastic deformation of materials, which
are essential for creating realistic simulations of metalworking operations were developed.

Interactive simulations for mechanical assembly enable the virtual assembly of mechanical systems,
providing insights into the assembly process and the interactions between components. In [9], Fang and
Chang (2010) developed a system for simulating the assembly of mechanical parts, enabling users to
explore different assembly sequences and detect potential issues.

D3.1 Craft-specific action simulations

Craeft D3.1 14/74

3. Visualisation toolbox
To achieve a generic way of simulating the appearance of artefacts and materials, we created a
programmable API. This way, the functionalities of the developed utilities are available to multiple
utilities developed in Craeft, as well as to third-party developers.

Rendering Lambertian (or “matte”, or “diffuse”) surfaces under any given illumination and décor has
been commonplace in Computer Graphics for decades. Today, several rendering libraries are available
with OpenGL and Open3D the most widely used open-source ones. In these libraries, the rendering of
textured matte surfaces has been optimised. However, more challenging phenomena, such as light
absorption and scattering that occur in shiny, semi-transparent, and translucent materials are not
realistically modelled. To solve this problem we use the Mitsuba 3 renderer (see Section 2). Besides
conventional, texture-based renderings this provides us with a realistic simulation of the appearance of:

1) scanned artefacts made from challenging (shiny, translucent, and transparent) materials and
2) artefact designs that are modelled in 3D for which a designer wishes to predict the way that

they would appear.

However, as this infrastructure is highly technical and research-based, we have developed a wrapper
that simplifies its use for broader audiences. Specifically, we created a toolbox that simplifies the
rendering of images and videos of arbitrary scenes, composed of 3D models and light sources, made
from virtually any material, given its physical properties. In this way, we can create realistic renderings
of craft artefacts. Moreover, we can simulate how these artefacts would appear when placed in an
arbitrary environment. The latter capability is useful for realistic previews of craft products and typical
environments, in which the buyers would place or use them. The toolbox can create both images and
videos; it can be found here, along with usage instructions: https://github.com/andriani-st/mitsuba3-
util/tree/GeneralUtil_Refactor.

The toolbox is operated using the Python scripting language and we intend to integrate it in the Design
Studio. To facilitate the use of the toolbox we created a few wrapper applications that simplify the
creation of image and video previews and aid their design.

Our toolbox is an integration of Mitsuba3 and its purpose is to simplify the usage of Mitsuba3 and
automate some of its functionality in a more user-friendly way. Utilising Mitsuba's state-of-the-art
physically-based rendering (PBR) techniques, our software ensures that the light transport and material
interactions are simulated with high fidelity. This allows for realistic previews of objects, capturing the
nuances of reflections, refractions, subsurface scattering, and surface textures for materials such
conventional and challenging materials such as glass, metal, plastic, wax, marble, and wood.

The rationale for the toolbox's functional design is the following. To use the toolbox only a configuration
file is needed as input. This file describes the scene elements (objects, materials, lights) the type of
requested output (image or video) and its properties (resolution, field-of-view, camera trajectory etc). In
other words, the toolbox is utilised as a “compiler” which receives configuration files and outputs visual
media. Our intention behind this choice is to make the toolbox available to multiple user interfaces, that
serve different purposes and applications: all that is needed is for the interface to generate the scene
file and call the toolbox. Using this approach, we created a few utility applications that specialise in
specific craft products.

Using the toolbox, users can define their scenes and adjust illumination settings to match specific
environments. Whether it’s natural sunlight, indoor lighting, or complex studio setups, the software

https://github.com/andriani-st/mitsuba3-util/tree/GeneralUtil_Refactor
https://github.com/andriani-st/mitsuba3-util/tree/GeneralUtil_Refactor

D3.1 Craft-specific action simulations

Craeft D3.1 15/74

provides the flexibility to recreate the desired lighting conditions for the most accurate visualisation.
Using 360 photography users can also import their environments in the appearance simulation.

A software interface allows programmers to adjust parameters, experiment with different materials,
and visualise the results. The toolbox is designed as middleware that can be used by a GUI that
implements an interactive design process that enhances creativity and ensures that the final product
meets the desired aesthetic and functional requirements.

The toolbox creates high-resolution images and videos that showcase the intricate details of the
simulated 3D models. This feature is aimed at presentations, client approvals, and marketing materials,
providing a powerful tool to communicate the artistic vision of the practitioner. A basic application
simulates the appearance of 3D models when made from different types of material, such as different
types and colours of glass. The example below illustrates a glass body made from variations on the type
of glass and metal from the same geometry (see Figure 1).

Figure 1. Simulation of materials. The first three illustrate different types of glass. The last simulates a metallic composition.

Next, an application renders a video from a 3D model as if it were placed on a turntable. This way, the
user can inspect the appearance of a designed product from all viewpoints around it. In addition, this
application can be constrained to rotate the object in a smaller range of angles. In this way, the user can
inspect how light interacts with a designed object, such as when rotating a metallic anaglyph under the
light to see how light is reflected upon it (see Figure 2).

Figure 2. Top: 360 video rendering of a glass body. Bottom: photorealistic rendering of the glass body.

In the following sections, it is described in detail how such a configuration file can be created and its
expected outcome.

3.1.1. Objects

To add 3D objects to the scene the objects array must be filled. There are two options for adding objects
to the scene.

• Setting the parameters of each object separately by providing a path to the object file for the
filename field and setting its material options

D3.1 Craft-specific action simulations

Craeft D3.1 16/74

• Set the parameters of multiple objects (in case the objects to add to the scene share the same
material) by providing a path to a folder with object files for the filename field. If a material that
supports colour is selected for the group of objects, a .txt file with RGB colours for each file can
be optionally provided for each object.

The objects are placed on the scene according to the coordinates set that is specified in the object file.
The objects can be provided in Wavefront OBJ (.obj) and Standford PLY (.ply) formats.

The utility toolbox facilitates the definition of scenes by providing auxiliary objects, specifically a floor
(ground plane) and a background plane. The use of these objects is optional. Using the floor option
places a rectangle object on the floor. The position of the floor is computed based on the camera pose
and the centre of the bounding box that contains the objects added to the scene. The background is
implemented as a planar “wall” behind the object. Like the background, the position of the background
is computed based on the camera pose and the centre of the bounding box that contains the objects
added to the scene.

3.1.2. Materials

All materials are described through their Bidirectional Scattering Distribution Functions (BSDFs) [17],
which are mathematical functions that characterize how light is scattered from a surface. that are
documented here are supported. Given its BSDF any material can be simulated. To facilitate frequently
used materials, the utility toolbox provides some predefined materials. These materials are:

• Glass and rough glass (with optional parameters of their colour) create solid glass objects. Also,
thin glass to create hollow glass objects (with the optional parameter of its colour).

• Plastic and rough plastic (with optional parameter its colour).
• Metal and rough metal. All metals are supported by acquiring their BSDFs from [18]. However, if

an alloy is needed to be rendered its BSDF function is required as input.

The rendering of the materials is demonstrated in the figures below.

D3.1 Craft-specific action simulations

Craeft D3.1 17/74

Figure 3. Smooth glass. Coloured (left) and transparent (right).

Figure 4. Rough glass.

Figure 5. Thin glass. Coloured (left) and transparent (right).

D3.1 Craft-specific action simulations

Craeft D3.1 18/74

Figure 6. Plastic glass. Transparent (left) and coloured (right).

Figure 7. Rough glass.

D3.1 Craft-specific action simulations

Craeft D3.1 19/74

Figure 8. Plastic glass. Transparent (left) and coloured (right).

Figure 9. Rough glass.

The differentiation between solid and hollow objects for glass is because glass is a transparent or
translucent material. A thin glass (dielectric material) is embedded inside another dielectric (e.g., glass
surrounded by air). The interior of the material is assumed to be so thin that its effect on transmitted
rays is negligible. Hence, light exits such a material without any form of angular deflection (though there
is still specular reflection).

The differentiation between smooth and rough surfaces determines the type of light scattering. For
smooth surfaces any given incoming ray of light, the model always scatters into a discrete set of
directions, as opposed to a continuum. Moreover, internal scattering can also be simulated with the
appropriate parameter setting (see the user’s manual on the toolbox website). This means that while
some of the diffusely scattered illumination directly refracts outwards, a portion of this energy is
reflected from the interior side of the dielectric boundary and remains inside the material for time until
it is reflected (and, thus, giving rise to translucent appearance).

D3.1 Craft-specific action simulations

Craeft D3.1 20/74

3.1.3. Lighting

Lighting is necessary for the simulation to result in visible surfaces1. Two lighting types are available:

1. Specific light sources. Light sources may be of ovaloid or paralepidid shape. Their size, colour,
position, orientation and radiance are user-defined.

2. Environments which simulate ambient illumination. Environments are provided as 360-degree
spherical images that define the incoming light from the environment. The utility toolbox is
compatible with conventional as well as High Dynamic Range (HDR) images. The toolbox allows
for uniform scaling of the environment radiance as well as arbitrary rotations of the spherical
image. Spherical images can be acquired by a 360 camera or downloaded from one of the many
available vendors on the internet2.

Figure 10. Lighting using prescribed light sources (left) and environment illumination (right).

An arbitrary number of light sources can be to the simulated scene. Moreover, the two types of lighting
can be combined by adding multiple light sources to the simulated environment.

3.1.4. Viewpoint

Once the scene is set, the viewpoint for the image to be rendered needs to be defined. Conventionally,
this is defined by specifying the intrinsic and extrinsic camera parameters. The extrinsic parameters
regard the camera pose (location and orientation). Intrinsic parameters determine the field of view and
the resolution of the output image(s).

An additional parameter is provided that determines the number of samples that will be used to
simulate the rendered scene. When rendering an image, the toolbox has to solve a high-dimensional
integration problem that involves the geometry, materials, lights, and sensors that make up the scene.
Because of the mathematical complexity of these integrals, they are solved numerically by evaluating
the function to be integrated at a large number of different positions referred to as samples. To do its
work, a rendering algorithm, or integrator, will send many queries to the sample generator. In other
words, the higher the value of this parameter is, the better the quality of the image.

1 Without adding light to the simulated scene, the result would be a black image.
2 A valuable resource of such images is: https://polyhaven.com/hdris

https://polyhaven.com/hdris

D3.1 Craft-specific action simulations

Craeft D3.1 21/74

Figure 11. A metallic cylinder is rendered from different viewpoints.

3.1.5. Outputs

Three output types are supported:

1. Single image: the scene is rendered from the specific viewpoint that has been defined.
2. Rotational video: the user defines an axis, step, and angle of rotation and an AVI video is

produced that emulates this camera motion. This type of output is useful for creating videos
that show artefacts from multiple views.

3. Animation video: in this case, a sequence of scenes is provided to the toolbox, as separate 3D
files and a video that renders the corresponding animation is produced. This type of output is

D3.1 Craft-specific action simulations

Craeft D3.1 22/74

useful for creating videos that show simulation results, rendered with the associated materials
rendered realistically.

3.1.6. Execution

The toolbox supports three types of execution, depending on the available hardware:

1. Serial CPU execution, where the simulation is conventionally executed.
2. Parallel CPU execution, where – if available – the parallel capabilities of the multiple CPUs are

exploited.
3. Parallel GPU execution, which – if available – exploits the graphics card of the computer.

The aforementioned options are listed in order of execution speed, with the first being the slowest and
the last being the fastest. The exact execution times depend on the capabilities of the specific hardware
available.

3.1.7. Integration of physics-based simulation and rendering
We integrated our visualisation toolbox renderer with the FEM simulation engine we use (Simulia
Abaqus) to create highly realistic renderings of mechanical processes, accurately reflecting the material
behaviours and techniques inherent to these crafts. By merging the precision of FEM simulations with
the visual fidelity physics-based rendering, we produce detailed visual representations that offer a
deeper understanding of the subtleties involved in traditional methods.

This level of realism is invaluable for a variety of applications. In research, it enables a more thorough
analysis of how different materials and techniques interact, providing insights into why certain methods
were developed and how they can be adapted or improved. For educators and students, these realistic
simulations serve as powerful teaching tools, offering an accessible way to explore complex craft
techniques.

Moreover, the integration has significant implications for cultural heritage and conservation. By
providing accurate visualizations of traditional crafts, we can better appreciate their cultural significance
and support efforts to conserve and restore artefacts. This technology also opens new possibilities for
innovation within traditional crafts, enabling the exploration of new materials and techniques in a
virtual environment before they are applied in practice. In commercial and artistic contexts, this
integration offers exciting opportunities for product design, prototyping, and artistic expression. By
combining traditional craft techniques with modern technology, designers and artists can create unique
works that push the boundaries of what is possible.

The integration works using file communication between the two software suites. Specifically, we
extended the visual toolbox to read Simulia Abaqus output files, in OBJ format. From the simulation
input we read the materials used and, in the visualisation toolbox, we specify their visualisation
properties appropriately. Below we present material-specific visualisations of archetypal simulators
presented in D2.1 “Action and affordance modelling”.

The first example, in Figure 12, regards the carving simulation. In this case, it is instantiated for a metal
carving, specifically copper, action, using a Tungsten-made wedge. The full video can be found at
https://youtube.com/watch/eKw25yT-UkA?feature=share and in https://youtu.be/EpuJlB1bEdc another
video shows the same scene from multiple views.

https://youtube.com/watch/eKw25yT-UkA?feature=share
https://youtu.be/EpuJlB1bEdc

D3.1 Craft-specific action simulations

Craeft D3.1 23/74

Figure 12. Metal carving simulation and physics-based rendering.

In Figure 13, we present a drilling example using a workpiece and tools from the same materials. The
figure shows two instances of the process, in the lefty and middle images. In the right image, we show
another capability of our approach, which is “hyper-realistic” rendering, in which we alter the realistic
parameters to provide more explanatory visualisation. In this case, the workpiece and supporting plane
are (hyper-realistically) rendered as semi-transparent glass to enable visualisation from a “down-under”
viewpoint and allow for a better view of the interaction of the tool with the material. The original video
can be found at https://youtube.com/watch/q8i8R3cCFMs?feature=share and the hyper-realistic
rendering is https://youtu.be/OTW0CeY2O9w.

Figure 13. Metal drilling simulation. The left and middle images show two instances of the action. The image on the right,
shows an instance of the same action from another viewpoint, down and under the supporting plane; this plane and the
workpiece are rendered as semi-transparent materials, to enable visibility of the drilled structure.

Using the toolbox, we can focus rendering on regions of interest to illustrate the details of the technique
and the interaction of the tool with the workpiece in detail. The important factor here is that re-
rendering at a higher resolution is not a magnification, but a re-rendering at a higher level of detail. In
Figure 14, we present such a detail from the previous example, at the regions where the drill interacts
with the workpiece.

https://youtube.com/watch/q8i8R3cCFMs?feature=share
https://youtu.be/OTW0CeY2O9w

D3.1 Craft-specific action simulations

Craeft D3.1 24/74

Figure 14. Re-rendering of a detail of Figure 13.

Finally, in Figure 15, we render the hot-rolling process that is executed in two steps, for the consecutive
thinning of a metallic workpiece. The video can be found here:
https://youtube.com/watch/aus1FQQrNko?feature=share

Figure 15. Two-step simulation of hot-rolling of metal and its physics-based rendering. Top: first step. Bottom: the second
step.

https://youtube.com/watch/aus1FQQrNko?feature=share

D3.1 Craft-specific action simulations

Craeft D3.1 25/74

4. Action simulation toolbox

In this section, we describe our efforts to bridge the computational gap between scientific, multi-physics
simulation and the real-time requirements of training applications. The problem we are trying to solve is
that accurate physics-based simulations require significant computational time, making them
inappropriate for real-time implementation. The way that we approach this problem is to use a simpler
physics-based simulation engine which, in addition, includes GPU-based parallel processing to accelerate
the computation and meet real-time requirements.

4.1. Action simulation toolbox

The NVIDIA PhysX engine is a real-time physics simulation engine developed by NVIDIA. It is designed to
handle complex physics calculations in video games and other real-time applications, enabling realistic
simulation of physical phenomena like rigid body dynamics, fluid dynamics, soft body dynamics, and
particle systems. PhysX provides detailed and accurate simulation of physical interactions, such as
collisions, gravity, and the behaviour of materials under various forces. It is supported across multiple
platforms, including Windows, Linux, and macOS. PhysX leverages the power of GPUs to perform physics
calculations, which offloads this processing from the CPU, resulting in more realistic simulations and
better overall game performance. It is integrated into popular game engines such as Unreal Engine and
Unity, making it accessible to game developers for creating rich, interactive environments. Beyond
gaming, it can be used in XR applications, where realistic physics simulation is critical for immersion and
accuracy.

4.1.1. Rationale

In this subsection, we describe the way we create the software interface between the two. To achieve
this we developed a software toolbox called “SimplePhysX5”. The SimplePhysX5 developed is a high-
level wrapper for the NVidia PhysX engine v5.4.0 that provides a software API for creating interactive
simulations in the Unity game engine. The toolbox is targeted at producing simulations of interactions
between “tools” (rigid objects) and materials (soft bodies) using the Unity game engine.
Following our project rationale, which is to analyse complex actions into elementary ones, the toolbox
provides only three elementary tools. These are the additive, subtractive, and shaping actions.
Interlocking actions need not be simulated with a different tool, but covered by the shaping actions. We
do not need an additional tool for interlocking as that interlock is a result of shaping actions (see also
D2.1 “Action and affordance modelling”).

4.1.2. Technical specification

The SimplePhysX5 API is exposed as a small set of C# classes, usable from Unity. These classes internally
call C/C++ functions from the provided DLLs. A Unity project is also provided, that demonstrates usage
of the API. The toolbox requirements are:

• NVidia GPU with the latest drivers installed
• Microsoft Visual C++ 2019 x64 redistributable3

3 Available at: https://aka.ms/vs/17/release/vc_redist.x64.exe

https://aka.ms/vs/17/release/vc_redist.x64.exe

D3.1 Craft-specific action simulations

Craeft D3.1 26/74

• Unity game engine (version 2022.3.22f1, or later)
There are four different kinds of objects that the API exposes and the developer can create:

• Ground plane object: this is a planar object that remains static (does not move) throughout the
simulation. As the name suggests, it simulates the ground. It behaves as having infinite mass.
Therefore, objects that collide with it eventually stop moving.

• Rigid dynamic objects: these are objects that can freely move and rotate. Rigid means that their
shape remains constant. The PhysX engine calculates and updates their position and orientation
as they collide with other objects or the ground plane. At each frame, the developer is
responsible for querying their current position and orientation (using the SimplePhysX5 API) and
updating the transformation of the corresponding entities in Unity (called “GameObjects” in the
Unity jargon).

• Rigid dynamic kinematic objects: these are objects that can move and rotate. Their shape
cannot be deformed. Unlike the simple rigid dynamic objects described above, PhysX does not
control the position and orientation of kinematic objects. Instead, the developer is responsible
for setting these properties at each frame (using the SimplePhysX5 API). They still take part in
the simulation and they can collide and interact with other objects. Rigid dynamic kinematic
objects are used to simulate objects that are controlled by the user, using either some
controller, Unity’s animation timeline, or scripting.

• Soft bodies: these are objects that get deformed when other objects collide with them. When
collisions do not exist anymore, their shape can be (fully or partially) reverted to the initial state.
Alternatively, the deformation can be permanent. The exact behaviour and the amount of
deformation are controlled by their material settings. At each frame, the developer is
responsible for querying the new positions of the mesh’s vertices (using the SimplePhysX5 API)
and updating the corresponding GameObject’s mesh in Unity.

In general, the developer creates a scene in Unity and populates it with 3D objects. It is assumed that
some of the objects’ transformations could be animated by either the user, using some controller, or
Unity, for example using scripts or a timeline object. Unity acts both as the 3D renderer and the
animation controller, while SimplePhysX5 is responsible for calculating collisions and deformations.

3.2.1. Simulated objects

The objects that take part in collisions, should be registered with the SimplePhysX5 API during start-up,
providing their triangle mesh and transformation. Then, at each frame, for objects that are moved and
rotated by the user (kinematic objects), the developer should inform the SimplePhysX5 API about their
current position and orientation. In addition, for objects that are not controlled by the user, the
developer should query (using the SimplePhysX5 API) for their current position and orientation (which
could have changed due to gravity or collisions) and update the corresponding GameObject’s
transformation accordingly. Finally, for soft bodies, the developer should ask the SimplePhysX5 API for
the object’s deformed vertices and update the corresponding GameObject’s mesh vertices accordingly.

3.2.2. SimplePhysX5 API classes

The core of the API is the PxPhysics class, which enables the definitions of materials and objects. It also
provides the simulation method, which runs the physics simulation. This method should be called at
each frame from a Unity script. The class also provides the PxErrorCallback delegate that can be set to
print messages useful for debugging. It is advised to set an error call-back during development and

D3.1 Craft-specific action simulations

Craeft D3.1 27/74

remove it in the release version. The provided C# classes and their methods are named as their
corresponding C++ classes of the NVidia PhysX engine.

The PxRigidDynamic and PxSoftBody classes are used to set or retrieve the transformation of rigid
bodies and retrieve the deformed vertices of soft bodies, respectively. The PxMaterial and
PxFEMSoftBodyMaterial classes are used to control friction parameters for rigid dynamic or soft bodies,
respectively. Also, the PxFEMSoftBodyMaterial and PxFEMParameters classes control the deformation
properties of soft bodies.

Most classes implement the IDisposable interface. Therefore, the Dispose method should be called at
program termination to avoid memory leaks. The objects need to be disposed of in the reverse order in
which they were created. If a PxErrorCallback delegate is used in the PxPhysics class, the delegate should
not throw exceptions and should only be destroyed after destroying the PxPhysics instance.

The SimplePhysX5 API is contained in the SimplePhysX5.dll, which should be loaded as a plugin in Unity.
It is statically linked to the nVidia PhysX DLLs (PhysX_64.dll, PhysXCommon_64.dll, PhysXCooking_64.dll,
PhysXFoundation_64.dll), which should be located in the same folder as the SimplePhysX5.dll. The
PhysXDevice64.dll and PhysXGpu_64.dll implement the GPU-accelerated part of the nVidia PhysX API.
They are loaded at runtime. They should be placed in a folder and the path to that folder should be
passed to the PxPhysics class constructor.

3.2.3. Mesh cooking

When creating physics objects, the triangle meshes of the objects must be cooked (preprocessed) by the
PhysX engine to generate the structures that accelerate collision detection. Cooking can take some time
(up to a few minutes) depending on the mesh’s size and required accuracy. To accelerate program start-
up, the PxPhysics class exposes two methods of creating objects:

1. (slow) simply cooks the mesh in memory every time the application runs.
2. (fast) cooks the mesh and saves the cooked mesh in a file. This file can then be loaded in

subsequent application runs to create the physics object without performing the cooking again.

3.2.4. Limitations

The current version of the toolbox has the following limitations

• Even though multiple soft bodies can be created, only one can be movable/rotatable. In other
words, a single tool can be used each time, implying that a single practitioner uses deformation
tools each time.

• Applying spatial scaling in Unity does not work correctly with collisions. 3D models should be
scaled to the correct size before getting imported into Unity.

4.2. Solids by revolution

An algorithmic approach is a proposed method for generating 3D models that represent the geometry of
solids by revolution. Such solids are found in several crafts such as woodturning, glassblowing, and
pottery.

D3.1 Craft-specific action simulations

Craeft D3.1 28/74

Given that the solids are generated by revolution they have a vertical symmetry. This property is
exploited for computational efficiency as follows. The editing takes place on a hypothetical planar
segment, which is represented by a binary image called a “template”. The editing of the shape takes
place in this image which is rotated to generate the simulated solid by revolution.

Editing the shape on the template is performed concerning the physical constraints of the simulated
mechanical configuration. Specifically, the infrastructure enables interaction only with the outer surface
of the revolved solid. In the template image, this translates into editing a contour which, when the
template is revolved, generates the solid.

The method involves manipulating a template image and applying various transformations to produce
and modify a solid by revolution. The generated 3D model is symmetrical about the Y-axis, with
additional features for user-defined modifications and transformations. The proposed approach
provides tools for additive, subtractive, and mass-preserving modifications.

4.2.1. Template image

The central data structure is a 2D binary matrix (or image), referred to as the "template." In this image,
white pixels represent material, while black pixels indicate empty space. By conceptually rotating this
template 360 degrees around its first column (aligned with the Y-axis in 3D space), we create a 3D
model. The height of the 3D model is fixed at one world unit, while the dimensions along the X and Z
axes are proportional to the template's aspect ratio. The model is centred at the origin (0,0,0) of the
coordinate system.

4.2.2. User-defined tools

Users can manipulate the template image using three types of tools:

1. Subtractive Tool: Removes material by converting white pixels to black at points of contact.
2. Additive Tool: Adds material by converting black pixels to white at points of contact.
3. Mass-Preserving Tool: Moves material by converting white pixels to black at contact points and

then adding an equal number of white pixels elsewhere.
Internally, each tool is represented as a sphere in the 3D world and visualised as a circle on the template
image. The reason for selecting the particular shape is the efficiency of the sphere in the computation of
collision detection, meaning the contact of the tool with the material. The generation of tools of more
complex shapes is possible, by combining multiple such spheres. Users can apply translations, rotations,
and uniform scaling to these tools, affecting the size and position of the circles on the template.

4.2.3 Algorithmic workflow

4.2.3.1. Initialization

First, the template image is allocated according to the user preferences that determine its size and
resolution. Next, the simulated tools are initialised according to user-specified parameters that
determine the type (subtractive, additive, mass preserving) and active status. Also, each tool has an
integer that serves as its unique identifier, used to change its parameters later.

The 4x4 transformation matrix (Qt) for each tool brings its 3D shape from its “local coordinate frame” to
the “world coordinate frame”. In the local coordinate frame, the centre of the sphere is the point (0,0,0)

D3.1 Craft-specific action simulations

Craeft D3.1 29/74

and the sphere has a radius of 0.5 units. The world coordinate frame is chosen by the user according to
the requirements of each application. The transformation matrix can contain any combination of
translations, rotations and uniform scaling. The world coordinate frame is the same for all tools.

A Boolean flag indicating whether the tool is currently “active”. If the tool is not active, it is not taken
into account by the API and does not change the template.

The API stores these parameters for each tool. The user can change these parameters (except the
unique ID of the tool) at any time using the corresponding API functions.

At initialisation, the template is uniformly downscaled (keeping the aspect ratio) to a size specified by
the user, through the "resolution" parameter of the API. Downscaling is done to reduce the execution
time and (at the same time) the complexity of the generated 3D model. Downscaling is optional.

4.2.3.2. Runtime

For generality, during the execution of the interactive simulation, we assume that the user may have
changed the initial (or preceding) parameters of the tools and the transformations of the tools and the
solid. This may have been done using controllers, through Unity's animation timeline or scripting. In
each case, we assume that the user has called the corresponding API functions so that the API has been
informed of the changes.

During runtime, at each frame, the active tool changes the pixels of the template according to its type.
More details on how this is implemented are provided below. At each frame, contours are traced in the
binary template using the method in [14] and its implementation in OpenCV's “findContours” function.
Importantly, the algorithm returns the contours it found in the image as a sequence of 2D points and the
points always have a consistent ordering. This allows us to produce a 3D model with consistent triangle
winding and consistent normal orientation.

Contour tracing typically results in >1 contours. We select only one, which we will use to generate the
solid and we discard the rest. We select the contour that contains the bottom left pixel of the image
template. The lower left pixel of the image template corresponds to the centre of the base of the solid4.
We note here that our API guarantees that the specific pixel will always be white in the template and
will therefore be contained in one of the contours.

To achieve real-time performance, the resolution of the image template is small. To achieve solids of
high resolution, we smooth and interpolate the traced contour. Smoothing is implemented by
convolution with a 1D Gaussian kernel. This ends up giving a smoother 3D model. Smoothing is optional
and enabled by default. It is disabled using the appropriate API function. Functions are also provided
with which the user can also set the kernel size and variance of the kernel.

Thereafter, we calculate the 2D normal vectors of the smoothed contour. The calculation is based on
computing the gradient direction (first derivative) of the contour at each of its points. Therefore, we
have one normal vector for each point of the contour. These will be utilised later to produce the 3D
normal vectors of the 3D model.

At the end of each frame, we create the 3D triangle mesh from the smoothed contour, as follows:

1. We create an array of 3D points, one 3D point for each 2D contour point. 3D points are
calculated as (x*s, y*s,0), where x, y are the pixel coordinates of the 2D contour point. The scale

4 We chose this particular pixel for aesthetic reasons: if we had kept another contour, we might have ended up
with a solid that would "float in the air".

D3.1 Craft-specific action simulations

Craeft D3.1 30/74

s is calculated as 1/H, where H is the height of the template image so that the height of the 3D
model is 1.

2. We create an array of 3D normals, one 3D normal for each 2D contour point. The 3D normals
are calculated as (nx, ny, 0), where nx, ny are the coordinates of the corresponding 2D normal of
the contour that we have already calculated above.

3. We append the above two arrays to 2 empty arrays respectively, points and normals, which will
be the points and normals arrays of the final mesh.

4. We rotate the 2 above arrays by i degrees around the Y axis and append the result to points and
normals arrays respectively. Repeat several times using angles 2*i, 3*i, and so on, until 360
degrees of rotation are completed. The number to repeat is determined by the parameter slices
of the API and determines the number of slices the generated solid will have. By default, we use
72 slices, so the corner i is 360/72=5 degrees.

5. We create the array indices, which we fill with the triangle indices. These are easily calculated
(...). We take care to maintain consistent triangle winding when calculating the triangle indices.

6. The triangle mesh of the solid consists of points, normals and indices arrays. The API provides a
function to return these arrays to Unity. Note that we do not generate texture coordinates
because we encountered a problem generating texture coordinates in the regions near the
poles of the solid. Instead, texturing is done through Unity using the tri-planar texturing
technique, which is often used in 3D graphics for texturing unknown or procedurally generated
meshes such as terrain, etc.

The user replaces in Unity the existing triangle mesh of the solid with the new one, simultaneously
applying the transformation Qs.

The API, after calculating the new mesh, also generates a 2D image showing some of the intermediate
results (e.g. detected and smoothed contours, 2D normals) for debugging use. The image can be
displayed to the user in a window using the appropriate function.

We note that to save computing power, the API also returns a Boolean flag that indicates whether the
mesh has changed or not since the last time it was generated. The mesh will not have changed unless
the algorithm parameters have changed (e.g. resolution, slices, etc.), if the transformations of the tools
and solid have not changed, if all tools were inactive, or if there were no collisions between tools and
solid. In these cases, the mesh is not calculated again and, if requested, the mesh that was calculated
last time is returned.

4.2.3.3. Manipulation of the image template by the tools

As mentioned, we consider that the sphere used by each tool is initially located in the local coordinate
frame (centre (0,0,0), radius 0.5) and the user applies a transformation to it. We chose this convention
because this is the mesh that Unity uses when creating a sphere object. Therefore, Qt coincides with the
transformation that the user will apply through the Unity editor and is provided by the corresponding
function of the Unity engine.

The following only applies if the tool is active. If it is not active, the corresponding code is not executed.

First, for each tool, the centre and radius of the sphere used by the user should be calculated, in the
local coordinate frame of the solid, i.e. after the Q transformation and Qs. We calculate the 4x4
transformation matrix M, which transfers from the local coordinate frame of the tool to the local
coordinate frame of the solid: M = Qs

-1 * Qt. Thus, the centre of the sphere in the local coordinate frame
of the solid is C = M * (0, 0, 0). We also consider a point on the sphere (0.5, 0, 0), which in the local

D3.1 Craft-specific action simulations

Craeft D3.1 31/74

coordinate frame of the solid is P = M * (0.5, 0, 0). The radius of the sphere in the local coordinate frame
of the solid is R = d(C, P), where d is the distance between two 3D points.

Then, the circle (centre and radius) in which this sphere is projected in the template image should be
calculated. The y coordinate of the centre of the circle is C.y*H, where H is the height of the template in
pixels. Since the solid is symmetric about the Y axis, it follows that the x coordinate of the centre of the
circle is hypot(C.x, C.z) * H, where hypot(x,y) is the hypotenuse of the triangle, sqrt(x2 + y2). Thus, the
centre of the sphere is projected on the template image at pixel c = (C.y*H, hypot(C.x, C.z)*H). The
radius of the circle in pixels is ρ = R * H.

By having the centre and radius of the circle, we know which pixels of the image template the tool will
modify. The behaviour from here on depends on the tool as described below.

4.2.4. Tools

4.2.4.1. Subtractive

All the pixels of the template inside the circle are painted black, except for the following special cases:

1. If the template does not contain white pixels inside the circle (= there is no collision between
the object and the solid) we do nothing and it is noted that the tool did not make any changes
(this information is then used to skip the mesh generation if necessary).

2. If all the pixels of the template inside the circle are white (= the tool is "inside" the solid) we do
nothing and it is noted that the tool did not make any changes (this information is then used to
skip the mesh generation if necessary). This is because if we paint the specific pixels black, the
solid gets "holes" internally and then some phenomena are observed where the manipulation of
the solid by the tools becomes unexpected from the point of view of user interaction.

After the changes, the tool "paints" the lower left pixel of the template white and runs connected
components labelling on the template image. If the template has ended up having more than one
connected component (= the solid was "split" into two or more pieces) we keep the component that
contains the bottom left pixel of the template (the "base" of the solid) and paint all the rest black.

4.2.4.2. Additive

All the pixels of the template inside the circle are painted white.

Special cases:
1. If all the pixels of the template inside the circle are black (= there is no collision between the

object and the solid) we do nothing and it is noted that the tool did not make any changes (this
information is then used to skip the mesh generation if necessary).

2. If the template does not contain black pixels inside the circle (= the tool is "inside" the solid) we
do nothing and it is noted that the tool did not make any changes (this information is then used
to skip the mesh generation if necessary). This is done to save computing power.

After the changes, the tool "paints" the lower left pixel of the template white and runs connected
components labelling on the template image. If the template has ended up having internal “holes” (=
the tool connected edges of the solid), the tool fills the holes with white pixels.

D3.1 Craft-specific action simulations

Craeft D3.1 32/74

4.2.4.3. Mass preserving

Initially, it behaves like the subtractive tool + special cases (see 1). After the changes, the tool "paints"
the lower left pixel of the template white and runs connected components labelling on the template
image. If the template has ended up having more than one connected component (= the solid was
"split" into two or more pieces) we keep the component that contains the bottom left pixel of the
template (the "base" of the solid) and paint all the rest black (same behaviour as the subtractive tool).
But if we have only one component, the tool adds white pixels as follows:

1. First, we find all the edge pixels of the template (the "surface" of the solid).
2. The edge pixels are sorted based on the (geodesic) distance from the pixels where there was a

collision of the tool with the solid.
3. We paint white the pixels that are adjacent to the edge pixels, starting from those with the

smallest distance and continuing to those with a greater distance. Thus, "mass" is moved to
other parts of the surface of the solid, while at the same time the solid "thickens" faster near
the points where there was a collision than at other points.

We stop painting white pixels when there are no more edge pixels or if the surface of the template
image (number of white pixels) has become equal to targetArea. The targetArea initially is the same as
the number of white pixels that the template had when we loaded it from the disk when starting the
program. The targetArea however, can be changed in some cases by the tools (e.g. in the case that the
solid "breaks" into two pieces and we throw away one). In case we run out of edge pixels before we
have reached the targetArea, moving pixels continues the next time the mass preserving tool is used (at
the next frame of the animation). Therefore, after repeated use of the tool, the surface of the solid will
at some point reach targetArea.

4.2.5. Example

To reduce computation and make the simulation interactive, the geometry of solids by revolution is
exploited. In the examples shown in Figure 16, the left panels show the real-time updated 3D rendering
and the right panels show the inner representation maintained by the toolbox. The user can edit the
voxel grid and inspect the result from any viewpoint, in real-time. The video demonstration can be
found at https://youtu.be/Yc7FtCdOeSs

https://youtu.be/Yc7FtCdOeSs

D3.1 Craft-specific action simulations

Craeft D3.1 33/74

Figure 16. Virtual pottery and software representation are maintained for real-time rendering in the Design Studio.

In Figure 17, we show the user’s view of the interaction. Specifically, the spherical tool is now
substituted by a 3D model of a human hand, manipulated by a 3D controller. Moreover, the shaping tool
is demonstrated, in the context of pottery. The full video of the demo9nstration can be found at
https://youtu.be/W2tzByCnlpc.

Figure 17. User's view of interaction with a clay body and the usage of a hand as a shaping tool.

https://youtu.be/W2tzByCnlpc

D3.1 Craft-specific action simulations

Craeft D3.1 34/74

5. Interactive simulations

In the pursuit of interactive and craft-specific simulations, a significant challenge arises in the form of
computational time. Finite Element Method (FEM) simulations, which are crucial for accurately
simulating the interaction between a tool and a workpiece, are not feasible in real time due to their
computational intensity. These simulations can require several hours to produce detailed and precise
results, making them unsuitable for applications requiring interactivity.

To address this challenge, a preliminary but computationally demanding solution was proposed in
Deliverable D2.1, "Action and Affordance Modelling". This approach involved precomputing all possible
outcomes based on user control parameters, such as tool speed and angle of incidence, and
subsequently rendering the pre-computed results according to the specific parameters employed by the
user. While this method proved functional, it is not scalable, as it demands substantial storage capacity
and high-speed hard drives to operate in real time.

Given these limitations, we have adopted a more efficient approach leveraging machine learning,
specifically artificial intelligence (AI). Instead of precomputing and storing action results for every
possible parameter configuration, we generate training data by conducting a select number of
simulations. These simulations are strategically chosen to sparsely sample the parameter space. Using
this data, we train a neural network to approximate the simulation results based on the given
parameters and material properties. This trained network is then integrated with the PhysX physics-
based engine, allowing for real-time approximation of the original simulation.

The following subsections detail the methodology used to produce the training data and the subsequent
application of this data to achieve real-time simulation capabilities.

5.1. Training data

Training data are produced using the Simulia Abaqus simulator. The simulations are constrained to the
material properties relevant to the studied action.

We present two cases of training data production. The first regards the most studied approach and
regards structural changes. We have recently started studying the role of temperature in these
simulations so that we can modulate this parameter as well in our training simulation. Thus, the second
example studies the production of temperature-dependent data.

5.1.1. Object interaction data

The data generated from the simulator are provided as training data to the AI through a structured and
methodical process. First, the relevant parameter space is defined, including variables such as tool
speed, angle of incidence, and material properties. A representative subset of these parameters is
carefully selected to ensure that the simulations cover a broad range of possible scenarios. This
selection is essential for enabling the neural network to generalise effectively across different
conditions.

Next, these selected parameters are used to run a series of simulations, using the FEM simulator. Each
simulation produces detailed output data, capturing the specific results of the interaction between the

D3.1 Craft-specific action simulations

Craeft D3.1 35/74

tool and the workpiece under the given conditions. These results might include data points related to
stress distributions, deformations, and material removal. The data are, then, labelled and structured
into a format suitable for training the neural network. Each dataset includes the input parameters (e.g.,
tool speed, angle, material type) and the corresponding simulation results (e.g., deformation patterns,
stress levels). This structured data set serves as the training input for the AI model.

Following the rationale of D2.1, we created an example, in which a tool interacts with (deforms) a
workpiece at multiple angles of incidence. In this case, however, we simulated the data sparsely, every
15 degrees and not every one degree as we did in D2.1.

D3.1 Craft-specific action simulations

Craeft D3.1 36/74

Figure 18. Creation of training data for a tool and a workpiece for incidence angles 0, 30, 45, and 60 degrees (from top to
bottom). The left column shows the instance before and the right column the instance after the tool impact.

5.1.2. Thermal-dependent data

A first investigation was performed to qualitatively extend the generated data, by making them both
material-specific and temperature-dependent. We present a preliminary study on how we intend to
treat this task, in our next steps.

In this case, we are studying the plasticity of metals concerning temperature. The objective of the
simulation study is to analyse the mechanical behaviour of aluminium under varying temperatures and
mechanical loading conditions. Specifically, the study investigates how temperature affects the stress
and pressure distribution within an aluminium rectangular parallelepiped (workpiece) subjected to
mechanical pressure. In the simulation, an imprinting (debossing) tool is moved along the Y-axis to apply
pressure on the workpiece, which is positioned on top of a rigid ground plane. The tool has the shape of
a parallelepiped.

The focus is on analysing the plastic properties of the workpiece at a displacement of 0.001 m and
0.0015 m and three temperatures: 20°C, 300°C, and 660°C. The simulation model includes gravity as a
fundamental external force acting on the system. The simulation is conducted using Abaqus to observe
how temperature influences the stress and pressure distribution within the workpiece.

Following the approach presented in “D2.1. Action and affordance modelling” we specialise the
archetypal action for deformation and instantiate the following scene elements:

• Tool: The tool has dimensions of 0.04 m × 0.05 m ×0.04 m.
• Workpiece: The workpiece has dimensions of 0.09 m × 0.09 m × 0.01 m
• Ground Plane: The ground plane is a rigid body that acts as a fixed support for the workpiece

and does not deform. The ground plane has dimensions of 0.12 m × 0.12 m × 0.005 m
The tool is made of steel and the workpiece from aluminium. The material properties are defined as
follows. For the tool, we use the environment temperature (i.e. 20 °C) and its properties are defined in
that temperature. The workpiece is heated and as such more material properties are needed to describe
its expansion due to heat and, most importantly, the change of plasticity and elasticity as a function of
material temperature.

As such for steel we use the following properties.

• Density: 7850 kg/m3

D3.1 Craft-specific action simulations

Craeft D3.1 37/74

• Elastic Modulus: 200 GPa
• Poisson's Ratio: 0.3
• Yield Stress: 355 MPa with Plastic strain 0 and Yield Stress: 470 MPa with Plastic strain 0.178

For aluminium besides density (2700 kg/m3) all other properties are temperature and provided in Table
1, Table 2, and Table 3.

Table 1. Young modulus and Poisson ratio of Aluminium as a function of temperature.

Young’s Modulus (GPa) Poisson's Ratio Temperature (°C)

70 0.33 20

69 0.33 100

68 0.33 200

67 0.33 300

66 0.33 400

65 0.33 500

64 0.32 600

63 0.32 700

Table 2. Expansion coefficient of Aluminium as a function of temperature.

Expansion Coefficient (10×-5) Temperature (°C)

2.3 20

2.5 100

2.6 200

2.7 300

2.9 400

3.2 500

3.5 600

3.7 660

Table 3. Yield stress and plastic strain of Aluminium as a function of temperature.

Yield Stress (MPa) Plastic Strain Temperature (°C)

275 0 20

255 0.005 100

230 0.01 200

200 0.015 300

175 0.02 400

150 0.025 500

120 0.03 600

In the simulation, the debossing moves in the Y-axis with displacements of 0.001 m and 0.0015 m. The
simulations are conducted at three district temperatures for each displacement: 20°C, 300°C, and 660°C.
Gravity is implemented in the simulation to represent the effects of gravitational force on the parts. The
magnitude of gravity is set according to standard gravitational acceleration, typically 9.8 m/s2. The
element type used is C3D8R (an 8-node linear brick, reduced integration).

D3.1 Craft-specific action simulations

Craeft D3.1 38/74

Figure 19. Von Mises Stress spatial distribution on the workpiece at three different temperatures 20°C (left), 300°C (middle),
and 660°C (right), for two displacements of 1mm (top) and 1.5mm.

In Figure 19, the von Mises stress distribution on the workpiece is depicted for three different
temperatures: 20°C, 300°C, and 660°C and the two displacement values. The colour bar located at the
top left of the figure indicates the stress values, with higher stresses represented by colours near red
and lower stresses represented by colours near blue or green. As the temperature increases, the colour
of the workpiece shifts towards green, indicating that the stress within the aluminium decreases at
higher temperatures.

Observations:

• 20°C: The pressure is highly concentrated around the contact region with sharp pressure
gradients.

• 300°C: The pressure distribution at 300°C is more uniform compared to 20°C. At this
temperature, the aluminium becomes more flexible, so the pressure spreads out more evenly.
Although the pressure is still high near the contact area, it decreases in intensity, with more
areas showing light blue colours.

• 660°C: The pressure distribution is significantly more uniform and spread out across the surface.
The workpiece shows an even greater reduction in pressure values, with a predominance of light
blue colour. This indicates a decrease in pressure intensity, as the material deforms more easily
under the applied load.

Across all three temperatures, pressure waves are created over the surface of the workpiece. These
waves are indicative of the distribution and transmission of pressure from the point of contact where
the debossing applies the load. The waves propagate outward from the contact area, showing how the
pressure is dispersed across the plate. The simulation results for 0.0015 m demonstrate that the
fundamental observations regarding stress and pressure distributions in the workpiece remain
consistent across different displacements. With greater displacement (0.0015 m), the magnitude of
pressure increases.

As the temperature increases, the overall colour of the workpiece shifts towards light blue. This change
illustrates the decrease in pressure intensity, which is a direct result of the reduction in the yield stress
and increased plasticity of aluminium at higher temperatures.

D3.1 Craft-specific action simulations

Craeft D3.1 39/74

The stress distribution results demonstrate a clear influence of temperature on the von Mises stress
within the workpiece. As the temperature increases from 20°C to 660°C, the stress values decrease
significantly. This stress reduction is due to the decrease in the yield stress of aluminium and the
increased plasticity at higher temperatures.

The observations of the pressure distribution results demonstrate the formation of pressure waves
across the aluminium surface and the increase in pressure with greater displacement of the debossing.
Additionally, the influence of temperature is evident, with higher temperatures leading to a more
uniform and widespread pressure distribution, and an overall decrease in pressure intensity.

5.2. Material approximations

Real-time simulation of the manipulation of real-world volumetric deformable objects is a challenging
task. Accuracy can be achieved with commercially available simulators [20] that rely on finite element
methods. However, these simulators do not perform in real-time and are thus unsuitable for interactive
applications. A recent review of simulators that are suitable for robotic applications and therefore
typically perform in real-time can be found in [23].

To fulfil both simulation accuracy and real-time requirements we investigate three different approaches,
two based on learning and one that relies on a GPU-powered real-time simulator, PhysX [22]. Learning-
based approaches rely on training data to model several aspects of a physical system. In this work, we
test two such approaches, one that models the object geometry only, 3DNS [27] and one that models
both the geometry and the dynamics, ACID [26].

Our progress is the following. We constructed 3D manipulation data using Simulia which is considered as
ground truth for all the methods. Initial experiments with this data for 3DNS and PhysX are shown in the
experiments section. The experimental evaluation of ACID is pending.

5.2.1. Methods

5.2.1.1. 3DNS

Implicit surface representations are becoming increasingly popular and achieve state-of-the-art results
in several tasks such as shape representation and reconstruction. 3DNS [27] proposes an approach for
making local edits in objects that are represented using implicit surfaces. 3DNS uses a brush-based
framework that is intuitive and can be used by sculptors and digital artists which is in line with CRAEFT
goals. The experimental evaluation results show that 3DNS is accurate, in terms of modelling the desired
edits, while preserving the overall object geometry outside the interaction areas, see Figure 45.

https://www.zotero.org/google-docs/?xSbRgx
https://www.zotero.org/google-docs/?h5wDWO
https://www.zotero.org/google-docs/?h5wDWO

D3.1 Craft-specific action simulations

Craeft D3.1 40/74

Figure 20. Example of multiple edits on two models using 3DNS.

5.2.1.2. ACID

ACID [26] is a dynamics model for deformable object manipulation based on implicit neural
representations. Within ACID two techniques are leveraged: implicit representations for action-
conditional dynamics and geodesics-based contrastive learning. Deformable dynamics and occupancy
representations are learnt from simulation data. More specifically, the framework is built with the
NVIDIA PhysX simulator used to generate a deformable dynamics dataset. By learning the deformation
dynamics from simulation ACID can provide a more accurate simulation in an evolving manipulation
setup compared to methods that only model geometrical deformations such as 3DNS. We plan to
experimentally validate its applicability in the following period.

5.2.1.3. PhysX

NVIDIA PhysX [21] can simulate complex physics interactions in real-time applications, particularly in the
realm of soft-body dynamics. By leveraging the parallel processing capabilities of GPUs, PhysX achieves
high-performance simulations, enabling real-time interaction and rendering of soft bodies. Soft body
dynamics involve the simulation of deformable objects that respond realistically to external forces, such
as gravity, collisions, and pressure. PhysX employs the FEM to handle the complexities of soft body
dynamics, ensuring that interactions between objects and the environment are faithfully represented.
To achieve this the objects are assigned properties such as elasticity, friction, and mass distribution.
Given that the focus of PhysX is on real-time applications the set of physical properties is kept small. In
the scenarios considered in Craeft, the main external force is the one applied by the tool on the object
that is manipulated.

https://www.zotero.org/google-docs/?1DnuQA
https://www.zotero.org/google-docs/?1DnuQA
https://www.zotero.org/google-docs/?YtH98o
https://www.zotero.org/google-docs/?YtH98o

D3.1 Craft-specific action simulations

Craeft D3.1 41/74

Figure 21. : Example of object deformation simulation when hit by a rigid rod using PhysX. The depicted blocks are the
elements of the FEM method used by the simulator.

5.2.2. Implementation

We performed PhysX experiments using two different approaches. Initially, we used USD Composer
from Omniverse [22]. Using its graphical tool, we were able to easily perform some first experiments to
establish the proof of concept. Subsequently, we used the PhysX SDK directly, to build a platform that
enables us to have full control over the performed manipulations, enabling us to assess the results
quantitatively in an automated fashion. In the following, we describe the basic elements of the PhysX
SDK-based platform

5.2.2.1. Input/Output

Physical properties and initial states of the actors are defined in JSON files and imported using the boost
property tree library [24]. Different sets of parameters are defined for the soft bodies (materials that are
manipulated) and rigid bodies (tools). Figure 22 shows example properties.

https://www.zotero.org/google-docs/?tzdnBg
https://www.zotero.org/google-docs/?tzdnBg

D3.1 Craft-specific action simulations

Craeft D3.1 42/74

Figure 22. Left: Soft body properties JSON. Right: Rigid body properties JSON.

Object geometry is imported using the Assimp library [69]. Assimp supports several formats, in our case
the wavefront ‘.obj’ file format is used for mesh definition [28]. The deformed meshes that result from
the manipulations are also exported in the same format. Figure 23 shows the code snippet for the mesh
import.

5.2.2.2. Simulation

The PhysX scenes contain objects called actors. Each actor has a physical state and properties that
include position, orientation etc. Actor states evolve over time due to applied forces and interactions. In
our case two actors are defined at each time step of the simulation: the tool as a rigid body actor, and
the manipulated material as a soft body actor. Given the actor properties and initial states from the
previous section, simulation is straightforward using the appropriate PhysX SDK API calls. The GPU
pipeline is used since it is the only one supporting soft bodies. The simulation results are shown in the
next section.

D3.1 Craft-specific action simulations

Craeft D3.1 43/74

Figure 23. Mesh import using Assimp.

5.2.3. Results

In this section, we present some preliminary results from evaluating the 3DNS and PhysΧ methods.
Simulia (Dassault Systems, 2023) was used to generate 3D scenes that show the manipulation of a
deformable timber block using a rigid metallic rod. The deformation caused by the timber in Simulia is
considered as ground truth. The physical parameters of the material used in Simulia are shown in Table
1. Our goal is to accurately reproduce this deformation using 3DNS and PhysX.

Table 4. Timber material properties from Simulia.

Density 650 kg/m3

Elastic modules

− E1 = 12 GPa

− E2 = 1.848 GPa

− E3 = 1.2 GPa

Poisson ratios

− v12 = 0.4

− v13 = 0.5

− v23 = 0.65

https://www.zotero.org/google-docs/?qDyCNU

D3.1 Craft-specific action simulations

Craeft D3.1 44/74

Shear modules

− G12 = 1.2 GPa

− G13 = 8 GPa

− G23 = 6 GPa

Plastic

(Type: isotropic)

− Yield stress 1 = 30 MPa

− Yield stress 2 = 40 MPa

− Plastic strain 1 = 0

− Plastic strain 2 = 0.2

Table 5. Aluminium material properties from Simulia.

Density 2700 kg/m3

Elastic modules 70 GPa

Poisson ratios v=0.27

Plastic

(Type: isotropic)

− Hardening: Johnson-Cook

− A = 1.48 GPa

− B = 3.41 GPa

− n= 0.18

− m = 0.859

− Melting Temperature =
5000 K

− Transition Temp = 1

5.2.3.1. 3DNS Evaluation

For 3DNS we select a suitable radially symmetrical brush. For this purpose, we use a smooth step

function, which is a function that takes the value for , the value for , and goes from to

 in the interval in a continuously differentiable increasing manner. If is a smooth step function,
then we can define a radially symmetric brush template, as follows:

By modifying the intensity of the stroke, we can successfully reproduce the ground truth deformations
for various applied force levels. One downside of 3DNS is that for each deformation a retrain of the
network is required which requires several (~10) seconds to complete in a GPU thus real-time
manipulation is not possible.

D3.1 Craft-specific action simulations

Craeft D3.1 45/74

5.2.3.2. PhysX Evaluation

The PhysX experiments were performed in Nvidia’s Omniverse platform. Two objects were defined in
the simulated scene, the rod as a rigid object and the timber block as a deformable object. The scene is
shown in Figure 21. The deformable object properties are shown in Table 6. At this moment there is not
an officially supported database with these parameters for known materials but such a database will be
released soon. Therefore, to define these properties we used the corresponding values from Simulia
where possible. Since there is no one-to-one correspondence some experimentation and fine-tuning
were required. The resulting deformations for strikes at three angles are shown in Figure 24. With
PhysX, the simulation is performed in real-time. Figure 25 shows simulations for timber and aluminium.

Table 6. Timber material properties from PhysX.

Density 650 kg/m3

Dynamic Friction 0.25

Young Modulus 5 GPa

Poisson Ratio 0.499

Elasticity Damping 1.0

Damping Scale 1.0

D3.1 Craft-specific action simulations

Craeft D3.1 46/74

Figure 24. 3DNS results compared to Simulia, for three angles of incidence. Top: profiles of stroke results for 0o, 15o, and 60o
(left to right, respectively). 3DNS results are plotted in red and Simulia results in orange. Bottom: 3D renderings of the results
above, in the same order as above from left to right; Simulia results in the back and 3DNS results in the front.

D3.1 Craft-specific action simulations

Craeft D3.1 47/74

Figure 25. Simulation of the effect of cylindrical tools on different surfaces (aluminium and wood). Every row visualizes
exemplar frames from different simulations. Different contact forces and angles are simulated, showcasing the different
impacts on the deformation of the surface.

D3.1 Craft-specific action simulations

Craeft D3.1 48/74

Figure 26. Simulation of the effect of chisel tools on a wooden surface. Every row visualizes exemplar frames from different
simulations. Again, different contact forces and angles are simulated.

D3.1 Craft-specific action simulations

Craeft D3.1 49/74

6. Process-specific simulators

Using the visualisation toolbox, we created a few simulators, which produce 3D models of objects in a
process-specific fashion. That is, the simulation acknowledges the process that is followed for the
objects to be crafted, as well as associated constraints, and produces results that are compatible with it.
These simulators are used in the Design Studio and they are demonstrated in D5.1, “Craft Design
Revisited”. In this section, we present their technical implementation; more extensive demonstrations
of their results can be found in D5.1.

6.1. Moulded, cast, and sculpted objects

Texture-based renderings of matte objects are supported by conventional, off-the-shelf rendering
engines and exhibit no challenge. The greatest challenge is the treatment of dielectric materials, such as
metals, porcelain, and glass, which cannot be rendered using conventional texture-based methods. The
result is the visualisation of the final appearance of custom moulded, cast, and sculpted pieces, from
vases and sculptures to jewellery and decorative items, across a variety of materials. The benefit is the
feedback during the design process. Visual updates enable quick iterations and refinements of the
design, reducing the time and cost associated with physical prototypes. This is particularly important in
sculpted, cast, and moulded products as the mistakes cannot be remedied.

The examples below demonstrate this for two 3D models. In Figure 27, shown is a 3D model rendered as
is made from glossy plastic.

Figure 27. A 3D model of a sculpture rendered as made from glossy plastic and shown from three viewpoints.

Moreover, the software can be used to predict the appearance of more complex structures made from
combined materials. The example Figure 28 shows the rendering of a composition made from an
assortment of materials (plastic, metal, and glass of various colours).

D3.1 Craft-specific action simulations

Craeft D3.1 50/74

Figure 28. A 3D composition is simulated to be made from multiple materials and shown from three viewpoints.

6.2.1. Traditional stained-glass windows

Traditional stained-glass windows used the “came glasswork”5 process of joining cut pieces of glass.
Several types of metal have been used, initially lead, but also brass, zinc, and copper. Copper foil is an
easy, versatile alternative to came and is particularly useful for small projects.
The provided application takes as input an image and automatically transforms it into a such came
glasswork composition. The user specifies:

1. The thickness of the glass pieces and, correspondingly, that of the metallic rig.
2. The distance (“gap”) between the glass pieces or, otherwise, the width of the soldering material

that joins the glass pieces.
3. The material that the skeleton rig is made of.

The result is twofold:

1. A 3D design of what pieces would be needed for the composition
2. Α photorealistic prediction of how the implementation of this design would look in a given

environment.

The process of transforming an image into a stained-glass window involves several computational steps,
including image processing, colour segmentation, morphological operations, and 3D modelling. The
image is segmented into regions of approximately the same colour. The segmentation method
employed is [13], but any other segmentation approach could be used. Once the image has been
segmented into colour regions the mean colour of each region is calculated, in the HSV domain6. The
mean colour is going to be assigned as the colour of the particular piece of stained glass needed to
represent the corresponding image region.
The method comprises the following steps:

5 Came glasswork is the process of joining cut pieces of art glass through the use of came strips or foil into
picturesque designs in a framework of soldered metal.
6 We prefer averaging colours in the HSV domain because the “mean colour” result is more compatible to human
perception than averaging colours in the RGB domain.

D3.1 Craft-specific action simulations

Craeft D3.1 51/74

1. Image Reading and Pre-processing: The initial step involves reading an image and preparing it
for subsequent processing.

2. Colour Quantisation: The image is colour-quantised to reduce the number of distinct colours,
facilitating the segmentation process.

3. Colour Segmentation: The quantised image is segmented based on colour regions, representing
different pieces of stained glass. The mean HSV colour is computed for each segment.

4. Morphological Image Operations: Morphological operations, specifically opening and closing,
are applied to the segmented image to refine the shapes and sizes of the segments, ensuring
that they are appropriately sized for stained glass pieces.

5. 3D Model Creation: The refined image segments are converted into 3D models representing the
individual glass pieces.

6. Skeleton Rig Modelling: A binary template from the morphological operations is used to create
a 3D skeleton rig that will support the stained-glass pieces.

In Figure 29, an illustrative example of the operation is shown.

Figure 29. An art image (left), its rendering as a stained-glass window (middle), and a prediction of how light is projected
from the external environment, in an empty room (right).

The application produces the 3D files for the glass pieces and the skeleton, as well as a configuration file
for the toolbox to render the scene.

6.2.1.1. Glass pieces

Traditional stained-glass windows used the “came glasswork”7 process of joining cut pieces of glass.
Several types of metal have been used, initially lead, but also brass, zinc, and copper. Copper foil is an
easy, versatile alternative to came and is particularly useful for small projects.

The provided application takes as input an image and automatically transforms it into a such came
glasswork composition. The user specifies:

1. The thickness of the glass pieces and, correspondingly, that of the metallic rig.
2. The distance (“gap”) between the glass pieces or, otherwise, the width of the soldering material

that joins the glass pieces.

7 Came glasswork is the process of joining cut pieces of art glass through the use of came strips or foil into
picturesque designs in a framework of soldered metal.

D3.1 Craft-specific action simulations

Craeft D3.1 52/74

3. The material that the skeleton rig is made of.

The result is twofold:

1. A 3D design of what pieces would be needed for the composition
2. Α photorealistic prediction of how the implementation of this design would look in a given

environment.

The image is read into the algorithm using a standard image processing library. Pre-processing may
include resizing, converting to grayscale if necessary, and normalising the pixel values. Colour
quantisation is performed using techniques such as K-means [139] clustering or median-cut algorithm
[140]. The aim is to reduce the number of colours in the image while preserving the essential visual
characteristics. This step is crucial for simplifying the segmentation process. Pixels are grouped into k
clusters based on colour similarity. The centroid of each cluster represents the colour for that segment.

The quantised image is segmented into distinct regions based on colour. This can be achieved through
region-growing algorithms, thresholding, or edge detection methods. Starting from seed points, regions
are grown by adding neighbouring pixels that have similar colour values.

In the segmentation result, neighbouring regions are “connected”, meaning that their boundary pixels
are neighbouring. As such their union covers entirely the template image and, thus, there is no room for
the metallic skeleton that is to hold them together. Therefore, each region needs to be uniformly
reduced in size (or “shrunk”) in such a way that the gap among pieces has the same thickness. As such,
we cannot simply scale each region, because due to their different shapes, this would result in unequal
distances (“gaps”) between regions. For this reason, morphological operations are employed to refine
the segmented regions. Opening removes small objects from the foreground (usually bright regions) of
the image. This is done by an erosion operation followed by a dilation. Closing fills small holes in the
foreground. This is achieved by a dilation operation followed by an erosion. These operations help in
refining the boundaries of the segments, ensuring they are well-defined and suitable for conversion into
glass pieces.

Each segment, now representing a piece of stained glass, is extruded into a 3D model. The thickness of
the glass and the dimensions of the segment are defined based on the image resolution and the
intended real-world dimensions. The 2D segment is given a uniform thickness to create a 3D object. A
mesh is generated for each segment to represent it in 3D space.

To create the 3D model of a piece of glass out of its image region we execute the following steps:

1. Triangulate the image region using the Delaunay method [19].
2. Trace the contour boundary points of the region, using the method in [14].
3. Convert the 2D region points into 3D points by adding zero (0) as their Z-coordinate.
4. Replicate the 3D points of step #3 and assign them as Z-coordinate the thickness of the stained-

glass parameter provided by the user.
5. Replicate the triangles found in step #2 for the new points generated in step #4.
6. Identify the 3D boundary points of the point sets, produced in steps #3 and #4, using the 2D

points from step #2 as pivots.
7. Create boundary triangles, by following the 3D boundary points from step #6, creating two

triangles for a pair of consecutive boundary points.

6.2.2.2. Skeleton rig

D3.1 Craft-specific action simulations

Craeft D3.1 53/74

To create the skeleton rig, the procedure is as follows. We start with the binary image of the template. A
“padding” is first created to represent the outer part of the rig (see Figure 30).

Figure 30. Original (left) and padded (right) template image.

After that we need to create the 3D model of the skeleton rig, from the template image; in Figure 30,
this corresponds to creating a 3D model for the region occupied by black pixels. This is achieved as
follows. For each point p = (px, py) of the template except points of last column and last row, we define
2×2 kernel with its top-left point at coordinates (px, py), which has points (p1,p2,p3,p4).

Then, we examine the number of black pixels in this kernel and define triangles by examining the
number of black pixels in this kernel:

1. If this number is 4, then we define 2 triangles (p1,p2,p3) and (p3,p4,p1)
2. If this number is 3 (meaning that a white pixel exists in the kernel), then we define 1 triangle,

according to the following subcases, according to the location of the white pixel:
a. (p1,p2,p3)
b. (p1,p2,p4)
c. (p1,p3,p4)
d. (p2,p3,p4)

Case 1 and the four subcases of case 2 are illustrated in Figure 31, along with the triangle(s) defined in
each case.

Figure 31. Triangulation cases are distinguished by the method for

We then duplicate the created triangles to provide “thickness” to the skeleton rig and upgrade them
from 2D to 3D, in the same way that we did for the glass pieces: that is, one triangle has Z = 0 and the
other has Z equal to the thickness of the rig.

D3.1 Craft-specific action simulations

Craeft D3.1 54/74

Then, for each triangle, we order its vertices so that they are normal towards the external part of the
skeleton; that is:

1. for the upper triangles (where, z = thickness), vertices are ordered so that their normal vector is
[0, 0, 1]T.

2. and the opposite ([0, 0, -1]T) otherwise.
Using the same method as for the glass pieces we collect all outline border points. As we previously did
for the triangles, we duplicate these points for the upper and lower parts of the rig. This task is
illustrated in Figure 32.

Figure 32. 2D boundary points of the skeleton rig and their conversion to two layers of 3D points.

For each upper point (green points in Figure 32) We collect its 8-connectivity neighbours and keep the
orthogonally connected neighbours in case they exist; otherwise, we keep the diagonally connected
neighbours. For each neighbour pn, we define 2 triangles:

1. (p, pn_bottom, p_bottom)
2. (p, pn, pn_bottom)

where pn_bottom is the corresponding bottom point (from outlineBorderPoints3D_bottom) of pn and
pn_bottom the corresponding bottom point of pn (see Figure 33, left).

Figure 33. Triangulation of lateral faces of the skeleton rig (left) and definition of their vector normal (right).

Then we need to define the vector normal for each triangle and, thus, we order (p1, p2, p3) so that the
normal points outwards to the skeleton. For this running example, the result is shown in Figure 34.

D3.1 Craft-specific action simulations

Craeft D3.1 55/74

Figure 34. 3D model of a skeleton rig (left) and its rendering as a copper solid (right).

6.2.3. Composite objects

New types of products can be designed using the visualisation toolbox. We target objects that are
composed of multiple materials and can be assembled. The individual pieces can be printed or
handcrafted given their 3D models. This utility creates planar and 3D composite objects that can be
assembled from multiple parts, taking as input conventional images, such as photographs or drawings.

6.2.3.1. Planar objects

A software utility was developed that takes as input an image and performs colour quantisation
according to a number of colours determined by the user. It then distinguishes the masks corresponding
to each colour. However, the quantisation result will typically contain holes, which would make the
physical implementation of the design impossible for some materials or, at least, extremely tedious for a
practitioner to craft or assemble. An example8 is given in Figure 35, showing the original image and the
quantised regions for the facial and hair-coloured pixels. Due to the intricate details, the 3D printing of
such components would result in numerous small pieces making the assembly task difficult or
impossible to achieve.

8 The example is inspired by the “Shot Marilyns”, a series of silkscreen paintings produced in 1964 by Andy Warhol,
each canvas measuring 40 inches square, and each one portraying actor Marilyn Monroe. See
https://en.wikipedia.org/wiki/Shot_Marilyns for more information.

https://en.wikipedia.org/wiki/Shot_Marilyns

D3.1 Craft-specific action simulations

Craeft D3.1 56/74

Figure 35. Original image and selection of pixels that correspond to two colours after colour quantisation.

To address this problem, the utility performs a morphological transformation (an “open and close
image” operation [74]) on each quantised layer to close small holes and smooth intricate boundary
details that would complicate the physical crafting of the final artefact. The computation implements a
simple image segmentation method based on colour quantisation and morphology; depending on style,
numerous other segmentation variants can be utilised [136, 137]. For this approach and seven colours,
the results are shown in Figure 36. In this case, the segmentation process results in 44 individual pieces.
The hair (yellow_ and shadow (dark grey) layers give rise to multiple small pieces.

Figure 36. Original image and binary masks obtained from colour and morphological image segmentation.

Thereafter, we used the same method as for the stained-glass windows to create the pieces to be
printed. However, this time we did not include the metallic skeleton rig, since the pieces should be glued
together. The image below illustrates the expected result. Numerous materials and illumination
configurations can be used to investigate the interaction of light with semi-transparent and translucent
materials that are printed or moulded and used for internal decoration. In Figure 37 (top two rows), we
illustrate the generality of the approach by simulating a light source, a titled colour pane, and two planar
and grey surfaces. Clear-coloured glass is simulated in this case to create the coloured projection on the
background wall. As demonstrated the simulation is capable of predicting the illumination effects

D3.1 Craft-specific action simulations

Craeft D3.1 57/74

introduced by the designed artefact. In Figure 37, we changed the glass surface to be rough and, thus,
scatter light more. In the bottom row, real 360 images are used for the environment illumination to
predict how the design would suit specific environments. A video of this demonstration can be found at
https://www.youtube.com/shorts/vKlDdEHxMqA.

Figure 37. Top two rows: simulation experiments that illustrate the interaction of light with semi-transparent objects (see
text). Bottom row: photorealistic previews of the designed artefact, in specific environments, from both sides.

6.2.3.2. 3D objects

Using the same artwork and the original photograph9 used to create the silkscreens, we extended the
utility to create sculptures composed of multiple pieces that a practitioner can assemble. In this case,
each piece corresponds to a colour. To create a 3D sculpture, the original photograph was treated by the
method in [74] which provides depth estimation from a monocular image. The original photograph and
the generated depth map are shown in Figure 38.

9 Publicity portrait of Marilyn Monroe as Rose Loomis in the 1953 film Niagara. Photograph by Gene Kornman.

https://www.youtube.com/shorts/vKlDdEHxMqA

D3.1 Craft-specific action simulations

Craeft D3.1 58/74

Figure 38. Original image and generated depth map, using [74].

Using conventional 2D image registration, we aligned the original photograph and Warhol’s work. This
way, the depth map associated with the photograph can be “transferred” to Warhol’s work and provide
a depth estimate for each location on the artwork. As shown in Figure 39 (top two rows), each
segmented image region can be directly converted into a 3D solid. The assembly procedure exhibits
similar constraints to solving a conventional jigsaw puzzle. In the example, three pieces must be placed
before being able to insert the eyelids in place. The last row of the figure predicts the same structure as
if printed from a more expensive material in a resin 3D printer.

D3.1 Craft-specific action simulations

Craeft D3.1 59/74

Figure 39. Visual demonstration of the assembly of a multi-coloured printed statue, using matte filament; the last image
shows the assembly result.

6.3. Lamps

D3.1 Craft-specific action simulations

Craeft D3.1 60/74

Figure 40. Rendering of 3D lamp models with external (top) and internal (bottom) light sources.

6.3. Cane working

In glassblowing, cane refers to rods of glass with colour; these rods can be simple, containing a single
colour, or they can be complex and contain strands of one or several colours in the pattern. Cane
working refers to the process of making a cane, and also to the use of pieces of cane, lengthwise, in the
blowing process to add intricate, often spiral, patterns and stripes to vessels or other blown glass
objects. Cane working is an ancient technique, first invented in southern Italy in the second half of the
third century BC and elaborately developed centuries later on the Italian island of Murano.

An application is provided that simulates the appearance of cane work compositions. The user specifies
the number, shape and dimensions of the canes that will comprise the result. In addition, a twisting
parameter is provided that determines the final shape of the simulated artefact.

D3.1 Craft-specific action simulations

Craeft D3.1 61/74

Figure 41. Numerical design of cane work structures and rendering (see text).

6.4. Metal engraving

Metal engraving is a process of cutting or carving designs, patterns, or text into the surface of a metal
object. This technique has been used for centuries to decorate, personalize, and mark metal items. The
process involves several key steps and can be applied to various types of metals, including gold, silver,
brass, copper, and steel. The application predicts the appearance of engraved pieces of metal, by
converting 2D carving designs into 3D models of carved items.

The process of converting 2D designs, such as engravings or line drawings, into 3D models involves
creating a relief or surface representation of the design in a three-dimensional space.

The process begins with the creation of a 2D design. This design can be a simple geometric pattern, a
line drawing, or any other visual representation. For example, we created an initial geometric design
using sine and cosine functions, and later a continuous line drawing pattern, which mimics hand-drawn
lines.

The 2D design is then translated into a 3D surface by interpreting the design as variations in height (or
depth). Each point in the 2D space is assigned a height value, effectively transforming the flat design into
a relief. In the examples provided, the height values were generated using mathematical functions that
create smooth transitions, resulting in a visually appealing 3D surface.

The 3D model is created by generating a mesh, which is a collection of vertices (points in 3D space) and
faces (polygons that connect the vertices). The vertices are derived from the 2D coordinates of the
design, with an added height dimension. The faces are constructed by connecting adjacent vertices,
forming the surface of the model. The height values (z-values) are often scaled to ensure the depth of
the engraving is appropriate for the intended use. Normalization may also be applied to maintain
consistency across different designs. Surface normals, which are vectors perpendicular to the faces of
the mesh, are calculated to ensure the 3D model renders correctly in 3D environments. These normals
are crucial for realistic lighting and shading effects.

D3.1 Craft-specific action simulations

Craeft D3.1 62/74

The final step is exporting the 3D model to the OBJ format, a widely-used format that supports both the
geometry (vertices and faces) and the associated surface normals. This format is compatible with most
3D modelling software and can be used for further editing, visualization, or fabrication.

The 3D models were visualized using 3D plotting tools to inspect the surface relief and ensure the
design's integrity. Depth maps were generated to provide a 2D grayscale representation of the 3D
surface, where the intensity of the grey colour represents the height. This visualization helps in
understanding the depth variations in the design. These designs and their implementation as a piece of
metal engraving are shown in Figure 42.

Figure 42. Numerical design of an engraving pattern (top) and renderings (bottom).

Converting 2D designs into 3D models involves a blend of artistic design and technical modelling. By
translating 2D patterns into height data, we can create detailed 3D surfaces that add depth and
dimension to otherwise flat designs. The process is versatile and applicable across various fields, making
it a valuable technique in both creative and industrial domains. Figure 43, shows three engraving designs
and their implementation on silver (top), gold (middle), and copper (bottom).

D3.1 Craft-specific action simulations

Craeft D3.1 63/74

Figure 43. Design images of engravings and renderings of their 3D interpretations.

A more systematic illustration of carving strokes is shown in Figure 44, where a carving style index is
transferred to a silver surface.

D3.1 Craft-specific action simulations

Craeft D3.1 64/74

Figure 44. A style guide for carving transferred to a metallic surface.

6.5. Ceramics and glazes

Glazing in ceramics enhances both aesthetic and functional qualities. It provides a wide range of colours
and finishes, enabling intricate decorative effects such as glossy, matte, or textured surfaces.
Functionally, glazing makes ceramics waterproof, more durable, and easier to clean by creating a non-
porous surface that resists scratches, stains, and bacteria. Additionally, glazes offer chemical and
thermal resistance, protecting ceramics from acidic or alkaline substances and enhancing their suitability
for culinary, laboratory, and oven use. Properly formulated glazes ensure food safety by preventing
harmful substance leaching. Artistically, glazing allows for creative expression through techniques like
layering and sgraffito, producing unique effects such as crackling and drips.

To produce the appearance of glazed ceramics, we have created a software utility that operates as
follows. The input is a 3D model of the ceramic artefact. The model may be textured or not, in which
case its absorption spectrum or material must be defined.

In both cases, the procedure is the same and requires as input the following parameters:

1. the thickness of the glaze (typically in the order of one to three millimetres)
2. the roughness of the glaze

Our software utility scales the 3D input mesh to inflate according to the required glaze thickness. This
results in a second 3D model, which is larger than the original and is in the same coordinate frame. Since
the two models are aligned, we proceed to use the algorithm in [15] to perform their Boolean
subtraction. This results in a new 3D mesh, representing the difference between the two mashes.

Since the two meshes are aligned and the one is a scaling of the other the difference is a “hollow” mesh
that represents the structure of the glazing material. A simple example below illustrates the procedure.

1. Original Mesh: Let a 3D sphere be the original mesh.

D3.1 Craft-specific action simulations

Craeft D3.1 65/74

2. Inflated Mesh: Scaled original mesh uniformly in all directions. In this example, this is simply a
larger sphere.

3. Difference of Meshes: The hollow mesh is created by subtracting the original mesh from the
inflated mesh. This means the final object will look like a shell with the thickness determined by
the scaling factor.

Figure 45, shows the visualization of this process:
1. Original Mesh: The blue sphere represents the original mesh.
2. Inflated Mesh: The red transparent sphere is the scaled version of the original mesh.
3. Hollow Mesh: The final image shows the hollow mesh, where the blue sphere (original mesh) is

subtracted from the red sphere (inflated mesh), resulting in a spherical shell.

Figure 45. Example illustration of mesh subtraction. Left: original mesh. Middle: inflated mesh. Right: "hollow" mesh.

In Figure 46, we demonstrate the technique, for different types of glazes on a clay body, painted with
underglaze colours (typically made from metal oxides). In the first row, no glazing is applied to the
painted body, which is treated as a diffuse (or Lambertian) surface. In the middle row, a thin layer of
glaze is applied. In the bottom row, a thick layer of glaze is applied.

D3.1 Craft-specific action simulations

Craeft D3.1 66/74

Figure 46. Visual simulation of glazed appearance. Top: no glazing. Middle: thin glazing. Bottom: thick glazing.

D3.1 Craft-specific action simulations

Craeft D3.1 67/74

7. Conclusions
This deliverable has presented a detailed exploration of the tools and methodologies developed to
enhance the simulation of craft-related activities through advanced computational techniques. By
integrating physics-based rendering, real-time simulations, and artificial intelligence, we have created a
robust platform that enables the realistic visualization and simulation of traditional crafting processes.
These tools allow for the accurate representation of materials and actions, as well as provide a valuable
resource for artisans, designers, and researchers to experiment with and refine their craft in a virtual
environment.

Our work has demonstrated the potential of combining modern digital tools with the timeless principles
of craftsmanship. The visualisation toolbox built on the Mitsuba 3 renderer has simplified the process of
scene composition, enabling users to realistically simulate the appearance of objects and materials
under various conditions. Additionally, the integration of the PhysX physics engine has facilitated real-
time interaction within simulated environments, allowing for the development of craft-specific
simulators that accurately replicate the physical processes involved in pottery, woodturning,
glassblowing, and more.

Despite these advancements, the computational demands of physically realistic simulations remain a
significant challenge. To address this, we introduced an artificial intelligence approach capable of
approximating simulation results in real time, thereby bridging the gap between computational intensity
and the need for immediacy in the design and testing phases.

Looking ahead, there are several promising avenues for expanding and refining the tools and
methodologies presented in this deliverable. One important direction is the expansion of craft-specific
simulators to encompass a wider array of traditional and modern techniques, such as metalworking,
textiles, and advanced woodworking. This would allow for more comprehensive simulations across
various disciplines. Additionally, further integration of sophisticated machine learning algorithms could
significantly enhance the accuracy of real-time simulations, enabling more precise approximations of
complex physical interactions. Improving the user interface to make these tools more intuitive and
accessible, particularly for non-experts, is another critical area for development. This could involve
creating custom interfaces tailored to specific crafts or incorporating augmented and virtual reality
technologies to offer a more immersive and interactive experience.

Collaborating directly with practitioners and designers will be essential in refining these tools to meet
practical, real-world needs. Such partnerships could also explore the educational potential of these
simulations, using them as a means to teach and preserve traditional skills. Moreover, ongoing research
into GPU acceleration and parallel computing could further bolster the real-time capabilities of our
simulations, allowing for the accurate representation of increasingly complex scenes and interactions.
Finally, the application of these tools in studying and enhancing the sustainability of craft practices
represents a meaningful area of future research. By simulating the environmental impact of various
materials and techniques, we can support artisans in making decisions that not only honour their craft
but also contribute to a more sustainable future.

D3.1 Craft-specific action simulations

Craeft D3.1 68/74

References

1. Liang, H. (2012). Advances in multispectral and hyperspectral imaging for archaeology and art
conservation. Applied Physics A, 106, 309-323. https://doi.org/10.1007/s00339-011-6689-1

2. Aila, T., & Laine, S. (2009). Understanding the efficiency of ray traversal on GPUs. Proceedings of
the Conference on High Performance Graphics 2009, 145-149.
https://doi.org/10.1145/1572769.1572792

3. Jensen, H. W. (2001). Realistic Image Synthesis Using Photon Mapping. A K Peters. ISBN:
1568811470

4. Debevec, P. (2008). Rendering synthetic objects into real scenes: Bridging traditional and image-
based graphics with global illumination and high dynamic range photography. In ACM SIGGRAPH
2008 Classes (pp. 1-10). https://doi.org/10.1145/280814.280864

5. Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi, R., & Ng, R. (2020). NeRF:
Representing Scenes as Neural Radiance Fields for View Synthesis. Proceedings of the European
Conference on Computer Vision (ECCV), 405-421. https://doi.org/10.1145/3503250

6. Park, J. J., Sinha, S. N., Efros, A. A., & Snavely, N. (2021). Deformable Neural Radiance Fields.
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 5791-5800.
10.1109/ICCV48922.2021.00581

7. Igarashi, T., Igarashi, Y., & Zorin, D. (2007). Interactive design of period styles for textile patterns.
ACM Transactions on Graphics, 26(3), 1-7.
https://doi.org/10.1145/3272127.3275105

8. Baxter, W. V., Scheib, V., Lin, M. C., & Manocha, D. (2001). DAB: Interactive haptic painting with
3D virtual brushes. Proceedings of the 28th Annual Conference on Computer Graphics and
Interactive Techniques, 461-468. https://doi.org/10.1145/383259.383313

9. Yunsheng Tian, Jie Xu, Yichen Li, Jieliang Luo, Shinjiro Sueda, Hui Li, Karl D. D. Willis, and
Wojciech Matusik. 2022. Assemble Them All: Physics-Based Planning for Generalizable Assembly
by Disassembly. ACM Trans. Graph. 41, 6, Article 278.
https://doi.org/10.1145/3550454.3555525

10. Eberly, D.H. 2004. "Game Physics", Morgan Kaufmann Publishers. ISBN 0123749034.
11. Kaufman, D., Edmunds, T. and D. Pai, 2010, “Fast Frictional Dynamics for Rigid Bodies”, ACM

SIGGRAPH 2005. https://doi.org/10.1145/1073204.1073295
12. Trzepieciński T, dell’Isola F, Lemu HG. Multiphysics Modeling and Numerical Simulation in

Computer-Aided Manufacturing Processes. Metals. 2021; 11(1):175.
https://doi.org/10.3390/met11010175

13. Guru Prashanth Balasubramanian, Eli Saber, Vladimir Misic, Eric Peskin, Mark Shaw,
Unsupervised color image segmentation using a dynamic color gradient thresholding algorithm,
Volume 6806, Human Vision and Electronic Imaging XIII; 68061H (2008)
https://doi.org/10.1117/12.766184

14. Satoshi Suzuki and others. Topological structural analysis of digitised binary images by border
following. Computer Vision, Graphics, and Image Processing, 30(1):32–46, 1985.
https://doi.org/10.1016/0734-189X(85)90016-7

15. Qingnan Zhou, Eitan Grinspun, Denis Zorin, and Alec Jacobson. 2016. Mesh arrangements for
solid geometry. ACM Trans. Graph. 35, 4, Article 39. https://doi.org/10.1145/2897824.2925901

16. Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, and Delio Vicini. 2022. Dr.Jit: A Just-In-Time
Compiler for Differentiable Rendering. In Transactions on Graphics (Proceedings of SIGGRAPH)
41(4). https://doi.org/10.1145/3528223.3530099

https://doi.org/10.1007/s00339-011-6689-1
https://doi.org/10.1145/1572769.1572792
https://doi.org/10.1145/280814.280864
https://doi.org/10.1145/3503250
https://doi.org/10.1109/ICCV48922.2021.00581
https://doi.org/10.1145/3272127.3275105
https://doi.org/10.1145/383259.383313
https://doi.org/10.1145/3550454.3555525
https://doi.org/10.1145/1073204.1073295
https://doi.org/10.3390/met11010175
https://doi.org/10.1117/12.766184
https://doi.org/10.1016/0734-189X(85)90016-7
https://doi.org/10.1145/2897824.2925901
https://doi.org/10.1145/3528223.3530099

D3.1 Craft-specific action simulations

Craeft D3.1 69/74

17. F O Bartell, E. L. Dereniak, W. L Wolfe, "The Theory and Measurement of Bidirectional
Reflectance Distribution Function and Bidirectional Transmittance Distribution Function" Proc.
SPIE 0257, Radiation Scattering in Optical Systems, (3 March 1981);
https://doi.org/10.1117/12.959611

18. Seung-Hwan Baek, Tizian Zeltner, Hyun Jin Ku, Inseung Hwang, Xin Tong, Wenzel Jakob, and Min
H. Kim. 2020. Image-based acquisition and modeling of polarimetric reflectance. ACM Trans.
Graph. 39, 4, Article 139 (August 2020), 14 pages. https://doi.org/10.1145/3386569.3392387

19. Delaunay, Boris (1934). "Sur la sphère vide" [On the empty sphere]. Bulletin de l'Académie des
Sciences de l'URSS, Classe des Sciences Mathématiques et Naturelles (in French). 6: 793–800.

20. Dassault Systems, SIMULIA Simulation Software. https://www.3ds.com/products/simulia 2024.
21. Nvidia PhysX developer site. https://developer.nvidia.com/physx-sdk 2024
22. NVIDIA Omniverse, The platform for connecting and developing OpenUSD applications.

Available at: https://www.nvidia.com/en-us/omniverse/ 2024.
23. Collins, J., Chand, S., Vanderkop, A., Howard, D., 2021. A Review of Physics Simulators for

Robotic Applications. IEEE Access 9, 51416–51431.
https://doi.org/10.1109/ACCESS.2021.3068769

24. Marcin Kalicinski and Sebastian Redl, 2024. Boost Property Tree Library,
https://github.com/boostorg/property_tree.

25. Open Asset Import Library, https://github.com/assimp/assimp, 2024.
26. Shen, B., Jiang, Z., Choy, C., Guibas, L.J., Savarese, S., Anandkumar, A., Zhu, Y., 2022. ACID:

Action-Conditional Implicit Visual Dynamics for Deformable Object Manipulation.
https://doi.org/10.15607/rss.2022.xviii.001

27. Tzathas, P., Maragos, P., Roussos, A., 2022. 3D Neural Sculpting (3DNS): Editing Neural Signed
Distance Functions.

28. Wavefront .obj file, 2024. https://en.wikipedia.org/wiki/Wavefront_.obj_file . Wikipedia.
29. P. Tzathas, P. Maragos, and A. Roussos, 3D Neural Sculpting (3DNS): Editing Neural Signed

Distance Functions, IEEE/CVF Winter Conference on Applications of Computer Vision (WACV),
January 2023. https://doi.org/10.1109/wacv56688.2023.00450

30. Courant, R. (1943). Variational methods for the solution of problems of equilibrium and
vibrations. Bulletin of the American Mathematical Society, 49(1), 1-23.

31. Clough, R. W. (1960). The finite element method in plane stress analysis. Proceedings of the 2nd
ASCE Conference on Electronic Computation, 8, 345-378.

32. Zienkiewicz, O. C., & Taylor, R. L. (2000). The Finite Element Method. Butterworth-Heinemann.
33. MacNeal, R. H. (1994). NASTRAN Theoretical Manual. MacNeal-Schwendler Corporation.
34. Bathe, K. J. (1996). Finite Element Procedures. Prentice Hall.
35. Cook, R. D., Malkus, D. S., & Plesha, M. E. (1989). Concepts and Applications of Finite Element

Analysis. John Wiley & Sons.
36. Hibbitt, H. D., & Karlsson, B. I. (1978). ABAQUS User’s Manual. Hibbitt, Karlsson & Sorensen, Inc.
37. Moaveni, S. (1999). Finite Element Analysis: Theory and Application with ANSYS. Prentice Hall.
38. Anderson, J. D. (1995). Computational Fluid Dynamics: The Basics with Applications. McGraw-

Hill.
39. Versteeg, H. K., & Malalasekera, W. (2007). An Introduction to Computational Fluid Dynamics:

The Finite Volume Method. Pearson Education.
40. Dawson, C. (1993). Doom Game Engine. id Software.
41. Havok. (2004). Havok Physics Engine. Havok.
42. Hecker, C. (2010). Physics simulation in games. In Game Developer Conference Proceedings.
43. NVIDIA. (2008). NVIDIA PhysX Technology Overview. NVIDIA Corporation.

https://doi.org/10.1117/12.959611
https://doi.org/10.1145/3386569.3392387
https://developer.nvidia.com/physx-sdk
https://www.nvidia.com/en-us/omniverse/
https://doi.org/10.1109/ACCESS.2021.3068769
https://doi.org/10.15607/rss.2022.xviii.001
https://doi.org/10.1109/wacv56688.2023.00450

D3.1 Craft-specific action simulations

Craeft D3.1 70/74

44. Slater, M., & Sanchez-Vives, M. V. (2016). Enhancing our lives with immersive virtual reality.
Frontiers in Robotics and AI, 3, 74.

45. Mendiburu, B. (2020). 3D TV and 3D Cinema: Tools and Processes for Creative Stereoscopy. CRC
Press.

46. Susi, T., Johannesson, M., & Backlund, P. (2007). Serious games: An overview. Technical Report
HS-IKI-TR-07-001. University of Skövde.

47. Thompson, J. (2019). Level of Detail for 3D Graphics. Morgan Kaufmann.
48. Waveren, J. V. (2016). Real-time AI for Games: Techniques and Applications. CRC Press.
49. D. Pye, The nature and art of workmanship, Cambridge University Press, London, 1968.
50. Keller C, Keller J. Imagery in cultural tradition and innovation. Mind Cult Act. 1999;6(1):3-32.

doi:10.1080/10749039909524711.
51. Aktas B, Mäkelä M. Negotiation between the Maker and Material: Observations on Material

Interactions in Felting Studio. International Journal of Design. 2019.
52. Cutsuridis, V, Taylor, J. A Cognitive Control Architecture for the Perception-Action Cycle in

Robots and Agents. Cognitive Computation, 2013;5:383–395 doi:10.1007/s12559-013-9218-z.
53. Raspall F. Design with Material Uncertainty: Responsive Design and Fabrication in Architecture.

In: Thomsen M, Tamke M, Gengnagel C, Faircloth B, Scheurer F, editors. Modelling Behaviour.
Cham: Springer; 2015. doi:10.1007/978-3-319-24208-8_27.

54. Iyobe M, Ishida T, Miyakawa A, Sugita K, Uchida N, Shibata Y. Development of a mobile virtual
traditional crafting presentation system using augmented reality technology. Int J Space-Based
Situat Comput. 2017;6(4):239–251.

55. F Fuchigami R, Ishida T. Proposal of a Traditional Craft Simulation System Using Mixed Reality.
In: Barolli L, Takizawa M, Yoshihisa T, Amato F, Ikeda M, editors. Advances on P2P, Parallel, Grid,
Cloud and Internet Computing. Cham: Springer; 2021. doi:10.1007/978-3-030-61105-7_32.

56. Edlin L, Liu Y, Bryan-Kinns N, Reiss J. Exploring Augmented Reality as Craft Material. In:
Stephanidis C, Chen JYC, Fragomeni G, editors. HCI International 2020 – Late Breaking Papers:
Virtual and Augmented Reality. Lecture Notes in Computer Science, vol 12428. Cham: Springer;
2020. doi:10.1007/978-3-030-59990-4_5.

57. Agelada A, Rizopoulos G, Flamos I, Kasapakis V. Users as Craftspeople: Demonstrating
Traditional Crafts using Interactive Immersive Virtual Reality. 2022 IEEE International
Conference on Artificial Intelligence and Virtual Reality; 2022. p. 245-247.

58. Rossau I, Skovfoged M, Czapla J, Sokolov M, Rodil K. Dovetailing: safeguarding traditional
craftsmanship using virtual reality. International Journal of Intangible Heritage. 2019;14:104-
120.

59. Hägele M, Nilsson K, Pires JN, Bischoff R. Industrial Robotics. In: Siciliano B, Khatib O, editors.
Springer Handbook of Robotics. Springer Handbooks. Cham: Springer; 2016. doi:10.1007/978-3-
319-32552-1_54.

60. Guo Z, Zhang Z, Li C. Robotic Carving Craft, Research on the Application of Robotic Carving
Technology in the Inheritance of Traditional Carving Craft. Proceedings of the CAADRIA
Conference; 2022 Apr 9-15; Sydney. p. 747-756. doi:10.52842/conf.caadria.2022.1.747.

61. Shaked T, Bar-Sinai KL, Sprecher A. Adaptive robotic stone carving: Method, tools, and
experiments. Automation in Construction. 2021;129:103809.
doi:10.1016/j.autcon.2021.103809.

62. Brugnaro G, Hanna S. Adaptive Robotic Training Methods for Subtractive Manufacturing. In:
Acadia 2017 Disciplines & Disruption: Proceedings of the 37th Annual Conference of the
Association for Computer Aided Design in Architecture. Cambridge, MA: Acadia Publishing
Company; 2017. p. 164-169.

https://doi.org/10.1007/s12559-013-9218-z

D3.1 Craft-specific action simulations

Craeft D3.1 71/74

63. Brugnaro G, Hanna S. Adaptive Robotic Carving. In: Willmann J, Block P, Hutter M, Byrne K,
Schork T, editors. Robotic Fabrication in Architecture, Art and Design 2018. Cham: Springer;
2019. doi:10.1007/978-3-319-92294-2_26.

64. T. Shaked, K. Bar-Sinai, A. Sprecher, Adaptive robotic stone carving: Method, tools, and
experiments, Automation in Construction, Volume 129, 2021, 103809, ISSN 0926-5805,
doi:10.1016/j.autcon.2021.103809.

65. Brugnaro G, Figliola A, Dubor A. Negotiated Materialization: Design Approaches Integrating
Wood Heterogeneity Through Advanced Robotic Fabrication. In: Bianconi F, Filippucci M,
editors. Digital Wood Design. Lecture Notes in Civil Engineering, vol 24. Cham: Springer; 2019.
doi:10.1007/978-3-030-03676-8_4.

66. Google, 3D Pottery, Available from: https://experiments.withgoogle.com/3d-pottery (Accessed
on 29 July 2024).

67. Eyewind, Pottery Master, Available from:
https://play.google.com/store/apps/details?id=com.create.pottery.paint.by.color (Accessed on
29 July 2024).

68. AZ Games. Master of Pottery, Available from:
https://store.steampowered.com/app/1160490/Master_Of_Pottery/ (Accessed on 29 July
2024).

69. Grow, A., Dickinson, M., Pagnutti, J., Wardrip-Fruin, N., Mateas, M. (2017). Crafting in games.
Digital Humanities Quarterly, 11(4).

70. Karastone, Knitting Simulator 2014. Available from:
https://karastonesite.com/2014/07/19/knitting-simulator-2014/ (Accessed on 29 July 2024).

71. Chotrov D, Uzunova Z, Maleshkov S. Real-time 3D model topology editing method in VR to
simulate crafting with a wood-turning lathe. 2019.

72. Xu R, Xu J. Research on Interactive Traditional Craft Diagram Model and Simulation System: Take
Nanjing Rong Hua Craft as an Example. In: Proceedings of the International Conference on
Advances in Energy, Environment and Chemical Engineering; 2016. p. 261-265.
doi:10.2991/aeece-16.2016.54.

73. NVIDIA, PhysX System Software, Available from: https://developer.nvidia.com/physx-sdk
(Accessed on 29 July 2024).

74. The Irregular Corporation, Woodwork Simulator, 2019. Available from:
https://steamdb.info/app/510230/info/ (Accessed on 29 July 2024).

75. Murray J, Sawyer W. Virtual Crafting Simulator: Teaching Heritage Through Simulation. In:
Proceedings of the International Conference on Education and New Learning Technologies;
2015. p. 7668-7675.

76. Eglash R. Ethnocomputing with Native American Design. In: Dyson LE, Hendriks M, Grant S,
editors. Information Technology and Indigenous People. IGI Global; 2007. p. 210-219.
doi:10.4018/978-1-59904-298-5.ch029.

77. Carre A, Dubois A, Partarakis N, Zabulis X, Patsiouras N, Mantinaki E, et al. Mixed-Reality
Demonstration and Training of Glassblowing. Heritage. 2022;5(1):103-128.
doi:10.3390/heritage5010006.

78. Canyon Art, WeaveIt, Available from: http://www.weaveit.com/ (Accessed on 29 July 2024).
79. Fiberworks, Fiberworks PCW, Available from: http://www.fiberworks-pcw.com/ (Accessed on 29

July 2024).
80. Arahne, ArahneWeave, Available from: http://www.arahne.si/ (Accessed on 29 July 2024).
81. pixeLoom, Available from: http://www.pixeloom.com/ (Accessed on 29 July 2024).
82. WeavePoint, Available from: http://www.weavepoint.com/ (Accessed on 29 July 2024).

https://experiments.withgoogle.com/3d-pottery
https://play.google.com/store/apps/details?id=com.create.pottery.paint.by.color&pcampaignid=web_share
https://store.steampowered.com/app/1160490/Master_Of_Pottery/
https://karastonesite.com/2014/07/19/knitting-simulator-2014/
https://developer.nvidia.com/physx-sdk
https://steamdb.info/app/510230/info/
http://www.weaveit.com/
http://www.fiberworks-pcw.com/
http://www.arahne.si/
http://www.pixeloom.com/
http://www.weavepoint.com/

D3.1 Craft-specific action simulations

Craeft D3.1 72/74

83. Eisenstein, J., Softweave, WIF Visualizer, Available from: https://softweave.com/software/wif-
visualizer/ (Accessed on 29 July 2024).

84. EAT - The DesignScope Company, Available from:
https://www.designscopecompany.com/simulation-knitting/77/the-art-knitting (Accessed on 29
July 2024).

85. Torii T. Hand-painted yuzen-dyeing simulation for online handcraft experience. Computer
Animation and Virtual Worlds. 2023;e2200. doi:10.1002/cav.2200.

86. Xu S, Mei X, Dong W, Zhang Z, Zhang X. Real-time ink simulation using a grid-particle method.
Computer Graphics. 2012;36:1025-1035.

87. Nam-Ho K, Bhavani S, Ashok K. Introduction to Finite Element Analysis and Design. Wiley; 2018.
88. Fish J, Belytschko T, A First Course in Finite Elements, 2007, Wiley.
89. Baek C, Johanns P, Sano TG, Grandgeorge P, Reis PM. Finite Element Modeling of Tight Elastic

Knots. Journal of Applied Mechanics. 2021;88(2):024501. doi:10.1115/1.4049023.
90. Crassous J. Discrete-element-method model for frictional fibers. Physics Review E.

2023;107(2):025003. doi:10.1103/PhysRevE.107.025003.
91. Inoue T. Tatara and the Japanese sword: the science and technology. Acta Mechanica.

2010;214:17–30. doi:10.1007/s00707-010-0308-7.
92. He Z, Xu J, Tran KP, et al. Modeling of textile manufacturing processes using intelligent

techniques: a review. International Journal of Advanced Manufacturing Technology.
2021;116:39–67. doi:10.1007/s00170-021-07444-1.

93. Orlik J, Krier M, Neusius D, Pietsch K, Sivak O, Steiner K. Recent Efforts in Modeling and
Simulation of Textiles. Textiles. 2021;1(2):322-336. doi:10.3390/textiles1020016.

94. Xie J, Guo Z, Shao M, Zhu W, Jiao W, Yang Z, et al. Mechanics of textiles used as composite
preforms: A review. Composite Structures. 2023;304(2):116401.
doi:10.1016/j.compstruct.2022.116401.

95. Fang G, Liang J. A review of numerical modeling of three-dimensional braided textile
composites. Journal of Composite Materials. 2011;45(23):2415-2436.
doi:10.1177/0021998311401093.

96. Li Y, Du T, Wu K, Xu J, Matusik W. DiffCloth: Differentiable Cloth Simulation with Dry Frictional
Contact. ACM Transactions on Graphics. 2022;42(1):2. doi:10.1145/3527660.

97. Boisse P, Hamila N, Vidal-Sallé E, Dumont F. Simulation of wrinkling during textile composite
reinforcement forming. Composites Science and Technology. 2011;71(5):683-692.
doi:10.1016/j.compscitech.2011.01.011.

98. Durville D. Simulation of the mechanical behaviour of woven fabrics at the scale of fibers.
International Journal of Material Forming. 2010;3(Suppl 2):1241–1251. doi:10.1007/s12289-009-
0674-7.

99. Brown L. TexGen. In: Kyosev Y, Boussu F, editors. Advanced Weaving Technology. Cham:
Springer; 2022. p. 253-291.

100. Research & Education Unit, Cal/OSHA Consultation Service, California, Department of Industrial
Relations and the National Institute for Occupational Safety and Health. Easy Ergonomics: A
Guide to Selecting Non-Powered Hand Tools. California Department of Industrial Relations and
the National Institute for Occupational Safety and Health; 2004. Publication No. 2004-164.

101. Radwin R, Haney J. An Ergonomics Guide to Hand Tools. 1996. doi:10.13140/RG.2.1.4761.5446.
102. Dababneh A, Lowe B, Krieg E, Kong Y, Waters T. A Checklist for the Ergonomic Evaluation of

Nonpowered Hand Tools. Journal of Occupational and Environmental Hygiene. 2005;1.
doi:10.1080/15459620490883150.

103. Uicker J, Pennock G, Shigley J. Theory of machines and mechanisms. New York: Oxford
University Press; 2011. ISBN 978-0-19-537123-9.

https://softweave.com/software/wif-visualizer/
https://softweave.com/software/wif-visualizer/
https://www.designscopecompany.com/simulation-knitting/77/the-art-knitting

D3.1 Craft-specific action simulations

Craeft D3.1 73/74

104. Bowser EA. An elementary treatise on analytic mechanics: with numerous examples. New York:
D. Van Nostrand Company; 1884. p. 202–203.

105. Lemaître J, Desmorat R. Engineering Damage Mechanics: Ductile, Creep, Fatigue, and Brittle
Failures. Springer; 2005.

106. Hashin Z. Failure criteria for unidirectional fiber composite. Journal of Applied Mechanics.
47(2):329-334. doi:10.1115/1.3153664.

107. Anderson T. Fracture Mechanics: Fundamentals and Applications. 4th ed. CRC Press; 2017.
108. Xu X, Needleman A. Numerical Simulations of Fast Crack Growth in Brittle Solids. Journal of the

Mechanics and Physics of Solids. 1994;42(9):1397-1434.
109. Virigiri VKR, Gudiga VY, Gattu US, Suneesh G, Buddaraju KM. A review on the Johnson-Cook

material model. Materials Today: Proceedings. 2022;62(6):3450-3456.
doi:10.1016/j.matpr.2022.04.279.

110. Johnson GR, Cook WH. Fracture Characteristics of Three Metals Subjected to Various Strains,
Strain Rates, Temperatures and Pressures. 1985.

111. Chen W, Han D. Plasticity for Structural Engineers. Springer; 1988.
112. Drucker D, Prager W. Soil Mechanics and Plastic Analysis or Limit Design. Quarterly of Applied

Mathematics. 1952;10:157-165.
113. Wood DM. Soil Behaviour and Critical State Soil Mechanics. Cambridge: Cambridge University

Press; 1990.
114. Frost H, Ashby M. Deformation-Mechanism Maps: The Plasticity and Creep of Metals and

Ceramics. Pergamon Press; 1982.
115. Nabarro F, de Villiers H. The Physics of Creep: Creep and Creep-Resistant Alloys. Taylor &

Francis; 1995.
116. Versteeg H, Malalasekera W. An Introduction to Computational Fluid Dynamics: The Finite

Volume Method. 2nd ed. Pearson Education; 2007.
117. Glotzer S, Rapaport D. Computer Simulation of Liquids. Oxford University Press; 2004.
118. Dantzig J, Rappaz M. Solidification. EPFL Press; 2009.
119. Chao-Yang W, Beckermann C. A two-phase mixture model of liquid-gas flow and heat transfer in

capillary porous media—I. Formulation. International Journal of Heat and Mass Transfer.
1993;36(11):2747-2758. doi:10.1016/0017-9310(93)90094-M.

120. Ferziger J, Perić M. Computational Methods for Fluid Dynamics. Springer; 2002.
121. Lewis R, Morgan K, Thomas H, Seetharamu K. The Finite Element Method in Heat Transfer

Analysis. John Wiley & Sons; 1996.
122. Çengel Y, Ghajar A. Heat and Mass Transfer: Fundamentals and Applications. 5th ed. McGraw-

Hill Education; 2014.
123. ISO. ISO 10303-21:2016 Industrial automation systems and integration – Product data

representation and exchange – Part 21: Implementation methods: Clear text encoding of the
exchange structure. Geneva: International Organization for Standardization; 2016.

124. Library of Congress. Document ID: fdd000507. 2020 Jan 23.
125. Tsai M, Prindible M. Wood Gouge-Capturing Human Skill. 2019. Available from:

https://courses.ideate.cmu.edu/16-455/s2019/index.html%3Fp=973.html (Accessed on 29 July
2024)

126. Harrison C, Childs H, Gaither K. Data-Parallel Mesh Connected Components Labeling and
Analysis. Eurographics Symposium on Parallel Graphics and Visualization; 2011.
doi:10.2312/EGPGV/EGPGV11/131-140.

127. He L, Ren X, Gao Q, Zhao X, Yao B, Chao Y. The connected-component labeling problem: A
review of state-of-the-art algorithms. Pattern Recognition. 2017;70:25-43.
doi:10.1016/j.patcog.2017.04.018.

https://courses.ideate.cmu.edu/16-455/s2019/index.html%3Fp=973.html

D3.1 Craft-specific action simulations

Craeft D3.1 74/74

128. Seymour J. The Forgotten Arts: A practical guide to traditional skills. Angus & Robertson
Publishers; 1984. p. 54. ISBN 0-207-15007-9.

129. Khaledi K, Rezaei S, Wulfinghoff S, Reese S, A microscale finite element model for joining of
metals by large plastic deformations, Comptes Rendus Mécanique, Volume 346, Issue 8, 2018,
Pages 743-755, ISSN 1631-0721, https://doi.org/10.1016/j.crme.2018.05.005.

130. Kumar RK, Babu AS. Finite element analysis and experimental study on metal joining by
mechanical crimping. International Journal of Service and Computing Oriented Manufacturing.
2014;1:295-306. doi:10.1504/IJSCOM.2014.066489.

131. Mui G, Wu X, Hu K, Yeh C, Wyatt K. Solder joint formation simulation and finite element analysis.
1997 Proceedings 47th Electronic Components and Technology Conference; 1997; San Jose, CA,
USA. p. 436-443. doi:10.1109/ECTC.1997.606207.

132. Anca A, Cardona A, Risso J, Fachinotti V. Finite element modeling of welding processes. Applied
Mathematical Modelling. 2011;35(2):688-707. doi:10.1016/j.apm.2010.07.026.

133. Cao J, Akkerman R, Boisse P, Chen J, Cheng H, de Graaf E, et al. Characterization of mechanical
behavior of woven fabrics: Experimental methods and benchmark results. Composites Part A:
Applied Science and Manufacturing. 2008;39(6):1037-1053.
doi:10.1016/j.compositesa.2008.02.016.

134. Vilfayeau J, Crépin D, Boussu F, Soulat D, Boisse P. Kinematic modelling of the weaving process
applied to 2D fabric. Journal of Industrial Textiles. 2015;45(3):338-351.
doi:10.1177/1528083714532114

135. Digital Image Processing (Third Edition) by Rafael C. Gonzalez and Richard E. Woods, ISBN 978-
93-325-7032-0 (2008).

136. Nikhil R Pal, Sankar K Pal, A review on image segmentation techniques, Pattern Recognition,
Volume 26, Issue 9, 1993, Pages 1277-1294, ISSN 0031-3203, https://doi.org/10.1016/0031-
3203(93)90135-J.

137. S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz and D. Terzopoulos, "Image
Segmentation Using Deep Learning: A Survey," in IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 44, no. 7, pp. 3523-3542, 1 July 2022, doi:
10.1109/TPAMI.2021.3059968.

138. Yang, L., Kang, B., Huang, Z., Xu, X., Feng, J., & Zhao, H. (2024). Depth Anything: Unleashing the
Power of Large-Scale Unlabeled Data. ArXiv, abs/2401.10891.

139. Lloyd, Stuart P. "Least squares quantization in PCM." Information Theory, IEEE Transactions on
28.2 (1982): 129-137.

140. (2008). Median Cut Algorithm. In: Furht, B. (eds) Encyclopedia of Multimedia. Springer, Boston,
MA. https://doi.org/10.1007/978-0-387-78414-4_36

https://doi.org/10.1016/0031-3203(93)90135-J
https://doi.org/10.1016/0031-3203(93)90135-J
https://doi.org/10.1007/978-0-387-78414-4_36

